
Understanding biological networks with
 the random walker’s  perspective 
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Background: Studying the organization of modular Methods:  We base our novel algorithms on the well-known 
random walker approach: we equate modules with biological networks such as protein-protein interaction 
metastable sets. We then associate the important paths and networks (PPI) can bring insights into the dynamics of the 
key nodes with those carrying the most flow in the sense of processes in the cell.
Transition Path Theory (TPT), a rigorous framework with Aim: reveal the organization of biological networks. 
proven properties originally designed for the study of 

While previous methods aim to identify a specific type of 
dynamical systems.

network element (community, hub, etc.), our methods 
discover these individual elements as well as the connections 

Results: We demonstrate the effectiveness of our methods between them, detecting modules, identifying the important 
in recovering known structures from a yeast PPI network.paths between them, and pinpointing key nodes in a network, 

which are most vital to network communication.

 

After identifying the modules, we turn to study the communication between them. We are interested in the 
paths and nodes through which the modules communicate.To this end, we look at  all the possible different 
settings of communication between every single module and the union of all other modules.

Methods

Results

One drawback of using the standard random walker with transition matrix P to detect 
dense network substructures is that structures like long chains are also metastable: 
The chain is decomposed into two sets, and the random walker alternates between 
them. We consider instead a time-continuous Markov process with generator L 
having the form of a rate matrix  defined as:

 

Unlike the discrete random walker, that moves from node to node in every timestep, 
the continuous walker must wait for the jump for a specified waiting time. The 

p
waiting time d(x)  that emerges from the definition above is proportional to the degree 
of the node: the more neighbors the random walker has to choose from, the longer 
the decision time. Thus, chains are no longer problematic, as the random walker 
moves along them quickly with low waiting time, while dense structures still slow it 
down with a high waiting time and are metastable.

  

where d(x) is the degree of node x.
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(1) Constructing the generator L.

A common approach for the analysis of networks exploits the strong connection between networks and Markov 
chains. One goal is to connect dynamical properties of the associated random walk to structural properties of the 
network itself. We then equate modules with node sets that will be metastable in the sense of the associated 
Markov chain: regions of the network where the random walker stays for a long time before exiting.

Network with an alternating structure

(2) Establishing the number of modules.

We first determine the number of modules in the network. 
This we obtain by looking at the spectrum of the transition  matrix P'  generated by L by 
P‘ = exp(L*t)
and counting the number of dominant eigenvalues: those eigenvalues close to 1 that 
control the behavior of the random walker in the long term. The spectral gap is clear 
due to the nice properties of P‘ (for example, P' never has negative eigenvalues, 
unlike the standard transition matrix)  and we can easily estimate the number of 
modules. 

Our sample network

(3) Identifying the modules.

We are not looking for a full partition of the network, rather we wish to milestone the 
network so that the behavior of the random walker on the milestoned network is the 
same as on the original network. That is done by looking for modules such that the 
spectrum of the milestoning process is close to that of the original process. More 
exactly, we wish to minimize the eigenvalue error:

where C  are the modules, ë  are the eigenvalues of the transition matrix of the original i j

process  and   are the eignvalues of the transition matrix of the milestoning process.
The minimization is done using simulated annealing, the initial input is obtained by 
using the PCCA+ algorithm.

Relevant papers: Djurdjevac, N., Bruckner, S., Conrad, T., Schuette, Ch..  Random walks on 
complex modular networks. submitted. 
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Detected modules

(4) Calculating statistical properties.
Key nodes are nodes through which much of the random walker "traffic" goes through as it traverses between the modules. 
Those nodes take part in the most intensive communication in the network. To identify these nodes we use TPT. We study the 
reactive trajectories between each module A and the union of the rest of the modules B: those are the "pieces" of the random walk 
that begin at  A and end at B. 

(5) Computing effective current
ABUsing the committors we can now define the probability current: the rate f  at which reactive trajectories flow from node i  to node j. ij

where ì  is the invariant measure.

Every edge of the network is now parameterized by its effective current

For a single node j we look at the reactive flow through j:

For this we use the committors, defined as:

for some subsets A, B of the network, where     is the hitting time. 

The committor gives the probability that the walker, starting in x, enters A earlier than B. 

Metzner, P., Schuette, Ch., Vanden-Eijnden, E. Transition path theory for 
Markov jump processes. Multiscale Modeling and Simulation, 7(3):1192–1219, 2009.
Relevant paper: 

(6) Scoring the key nodes.

We describe the global transition behavior between sets A and B. This is the 
average number of reactive trajectories, or the average number of transitions 
from A to B per time unit.

To identify the key nodes, we now compute for each candidate node j the rate of 
reactive trajectories that go through j  when A->B. 

The figure to the right shows the key nodes of our sample network,
 with the 3 different settings, and a table giving the scores for each.

Relevant paper:  Djurdjevac, N., Bruckner, S., Conrad, T., Schuette, Ch..  Random 
walks on complex modular networks, submitted. 

 

We apply our methods to the filtered yeast network [1] (FYI) , where the authors constructed a high-
confidence PPI network and analyzed its hubs.
Our analysis gave 43 modules, visualized on the figure on the right. Testing the functional enrichment of 
our modules provided good results, as our modules comprise, for example, the Arp2/3 protein complex, 
the 20S proteasome, all proteins involved in the processs of double-stranded DNA binding, and those 
annotated with RNA polymerase III transcription factor activity, along with other significant annotations.
We also looked at key nodes, graphing the high-scoring ones on the right. Our key nodes show high 
correspondence with the essential hubs identified in [1]. 

We plan to continue our research into the biological nature of the hubs, and also to study the effects of the 
various parameters and the identification of the spectral gap on our results. We are extending our results to 
the study of other networks, such as social and transportation networks.
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