
Evaluation of ILP-based Approaches for
Partitioning into Colorful Components

Sharon Bruckner1?, Falk Hüffner2??, Christian Komusiewicz2, and
Rolf Niedermeier2

1 Institut für Mathematik, Freie Universität Berlin, Germany
sharonb@mi.fu-berlin.de

2 Institut für Softwaretechnik und Theoretische Informatik, TU Berlin, Germany
{falk.hueffner,christian.komusiewicz,rolf.niedermeier}@tu-berlin.de

Abstract. The NP-hard Colorful Components problem is a graph
partitioning problem on vertex-colored graphs. We identify a new ap-
plication of Colorful Components in the correction of Wikipedia
interlanguage links, and describe and compare several exact and heuristic
approaches. In particular, we devise two ILP formulations, one based on
a Hitting Set and the one based on a Clique Partition formulation.
Furthermore, we use the recently proposed implicit hitting set framework
[Karp, JCSS 2011, Chandrasekaran et al., SODA 2011] to solve Colorful
Components. Finally, we study a move-based and a merge-based heuris-
tic for Colorful Components. Our approach can solve the Colorful
Components model of Wikipedia link correction optimally; while the
Clique Partition-based ILP outperforms the other two approaches,
the implicit hitting set is a simple approach that delivers competitive
results. The merge-based heuristic is very accurate and outperforms the
move-based one.

1 Introduction

Each entry in Wikipedia has links to the same entry in other languages. Sometimes,
these links are wrong, while others are missing, since they are added and updated
manually or by näıve bots. These errors can be detected by a graph model [3, 13,
14]: Each entry in a language corresponds to a vertex, and an interlanguage link
corresponds to an edge. Then, ideally, a connected component in this graph would
be a clique that corresponds to a single Wikipedia term in multiple languages,
and, under the plausible assumption that for every language there is at most one
Wikipedia entry on a particular term, each language should occur in a connected
component only once. However, due to errors this is not the case. Our goal is
to recover the correct terms by removing incorrect links and completing the
resulting components. This can be done at minimum cost using a partitioning
problem on a vertex-colored graph.

? Supported by project NANOPOLY (PITN-GA-2009–238700).
?? Supported by DFG project PABI (NI 369/7-2).

Colorful Components
Instance: An undirected graph G = (V,E) and a coloring of the ver-
tices χ : V → {1, . . . , c}.
Task: Find a minimum-size edge set E′ ⊆ E such that in G′ = (V,E\E′),
all connected components are colorful, that is, they do not contain two
vertices of the same color.

We remark that the plain model naturally generalizes to an edge-weighted version
and our solution strategies also apply to this.

Throughout the work, let G = (V,E) where n := |V | and m := |E|. To solve
Colorful Components, we need to separate vertices of the same color. A bad
path is a simple (i. e., cycle-free) path between two vertices of the same color.

Related work. Implicitly, Colorful Components has first been considered
in a biological context as part of a multiple sequence alignment process, where
it is solved by a simple min-cut heuristic [8]. Previously, we showed that it is
NP-hard even in three-colored graphs with maximum degree six [4] and proposed
an exact branching algorithm with proven worst-case running time bound and
a merge-based heuristic which outperformed that of Corel et al. [8] on multiple
sequence alignment data.

Avidor and Langberg [2] introduced Weighted Multi-Multiway Cut
and provided results on its polynomial-time approximability (with non-constant
approximation factors).

Weighted Multi-Multiway Cut
Instance: An undirected graph G = (V,E) with edge weights w : E →
{x ∈ Q : x ≥ 1} and vertex sets S1, . . . , Sc ⊆ V .
Task: Find a minimum-weight edge set E′ ⊆ E such that in G′ =
(V,E \ E′) no connected component contains two vertices from the
same Si.

Colorful Components is the special case of Weighted Multi-Multiway
Cut when the vertex sets form a partition.

A previous formalization of the Wikipedia link correction problem leads to a
harder problem: it uses several separation criteria (instead of using only language
data) and also allows to “ignore” the separation criterion for some vertices [13, 14].
The resulting optimization problem is a generalization of Weighted Multi-
Multiway Cut. Since solving to optimality turned out to be too time-costly
and non-scalable, a linear programming approach was followed [12, 13].

2 Solution Methods

We examine three approaches to finding optimal solutions for Colorful Com-
ponents: One based on the implicit hitting set model by Moreno-Centeno and
Karp [11, 15], and two based on integer linear programming (ILP) with row
generation.

2

2.1 Implicit Hitting Set

Many NP-hard problems are naturally related to the well-known NP-hard Hit-
ting Set problem, which is defined as follows:

Hitting Set
Instance: A ground set U and a set of circuits S1, . . . , S` with Si ⊆ U
for 1 ≤ i ≤ `.
Task: Find a minimum-size hitting set, that is, a set H ⊆ U with
H ∩ Si 6= ∅ for all 1 ≤ i ≤ `.

We can easily reduce Colorful Components to Hitting Set: The ground
set U is the set of edges, and the circuits to be hit are all bad paths. Unfortunately,
this can produce an exponentially-sized instance, and thus this approach is
not feasible. However, we can model Colorful Components as an implicit
hitting set problem [1, 6, 11, 15]: the circuits have an implicit description, and a
polynomial-time oracle is available that, given a putative hitting set H, either
confirms that H is a hitting set or produces a circuit that is not hit by H. In
our case, the implicit description is simply the colored graph, and the oracle
either returns a bad path that is not hit by H or confirms that H is a solution
to Colorful Components.

Implicit hitting set models are useful for finding approximation algorithms [1,
6], but also for implementing exact solving strategies [15]. In the latter case, the
approach is as follows. We maintain a list of circuits which have to be hit, initially
empty. Then, we compute an optimal hitting set H for these circuits. If H is a
feasible solution to the implicit hitting set instance, then it is also an optimal
solution to Colorful Components. Otherwise, the oracle yields a bad path
that is not destroyed by H. This bad path is added to the list of circuits, and we
compute again a hitting set for this new list of circuits. This process is repeated
until an optimal solution is found. The hitting set instances can be solved by
using any Hitting Set solver as a black box; Moreno-Centeno and Karp [15]
suggest an ILP solver, using a standard set-cover-constraint formulation.

As suggested by Moreno-Centeno and Karp [15], we use the following two
tricks to speed up the computation. First, we initially solve each hitting set
problem using a heuristic, and only use the ILP solver in case the oracle confirms
that the heuristic solution gives a valid (but possibly non-optimal) solution for
Colorful Components. Second, instead of adding only one new circuit in
each iteration, we greedily compute a set of disjoint shortest bad paths that are
added to the circuit set.

2.2 Hitting Set ILP formulation

Moreno-Centeno and Karp [15] mention that their approach is related to column
(variable) generation schemes for ILP solvers. Possibly even more straight-forward,
we can solve any implicit hitting set problem with an ILP solver by a row
(constraint) generation scheme (also called “lazy constraints” in the well-known
CPLEX solver). For this, we declare binary variables h1, . . . , h|U |, where the value

3

of hi is to indicate whether the ith element of U (under some arbitrary order) is
in H. The objective is to minimize

∑
i hi. We then start the branch-and-bound

process with an empty constraint set and, in a callback, query the oracle for
further constraints once an integer feasible solution is obtained. If new constraints
are generated, they are added to the problem, cutting off some parts of the search
tree. Otherwise, we have found a valid solution. Note that adding lazy constraints
is different from adding cutting planes, since cutting planes are only allowed
to cut off fractional solutions that would not be integer feasible, whereas lazy
constraints can also cut off integer feasible solutions.

More concretely, for Colorful Components, we have a variable duv, u < v,
for each {u, v} ∈ E, where duv = 1 indicates that edge {u, v} gets deleted.
We then want to minimize

∑
e∈E de. The oracle deletes all edges {u, v} with

duv = 1, and then looks for a bad path u1, . . . , ul. If it finds one, it yields the
path inequality

l−1∑
i=1

duiui+1
≥ 1. (1)

We could hope that this process is more effective than the general implicit
hitting set approach which uses an ILP solver as a black-box solver, since
constraints are generated early on without the need for the solver to optimally
solve subproblems that yield solutions that are not globally feasible.

The main disadvantage of this approach, compared to the implicit hitting set
formulation, is that it requires a solver-specific implementation; further, some ILP
solvers such as Coin CBC 2.7 or Gurobi 4.6 do not support adding lazy constraints
without starting the solving process from scratch (the recently released Gurobi 5.0
adds this feature).

2.3 Clique Partitioning ILP formulation

It is known for a long time (e. g. [7]) that multicut problems can be reduced to
Clique Partitioning. In this problem, vertex pairs are annotated as being
similar or as being dissimilar, and the goal is to find a partition of the vertices
that maximizes consistency with these annotations. We model the partition of
the vertices as a cluster graph, that is, a graph where every connected component
is a clique. The formal problem definition is then as follows:

Clique Partitioning
Instance: A vertex set V with a weight function δ :

(
V
2

)
→ Q.

Task: Find a cluster graph (V,E) that minimizes
∑
{u,v}∈E δ(u, v).

Herein, δ(u, v) denotes the dissimilarity between u and v.
To obtain a Clique Partitioning instance from a Colorful Components

instance, we set

δ(u, v) =

∞ if χ(u) = χ(v),

−1 if {u, v} ∈ E,

0 otherwise.

(2)

4

A component in a feasible solution for this Clique Partitioning instance
cannot contain more than one vertex of a color, since the component is a clique
and the two vertices would be connected, incurring a cost of ∞. Thus, the
solution also is a feasible solution for Colorful Components, and the cost is
the number of edges between components, and therefore equals the number of
edges that need to be deleted for Colorful Components.

There is a well-known ILP formulation of Clique Partitioning [9, 17], which
we can adapt for Colorful Components. It has been successfully implemented
and augmented with cutting planes [5, 9, 16]. It uses binary variables euv for
u, v ∈ V, u < v, where euv = 1 iff the edge {u, v} is part of the solution cluster
graph. Cluster graphs are exactly those graphs that do not contain a P3 as
induced subgraph, that is, three distinct vertices u, v, w with {u, v} ∈ E and
{v, w} ∈ E but {u,w} /∈ E. Thus, we can ensure that the graph is a cluster
graph by avoiding a P3 for each possible triple of vertices u < v < w ∈ V :

euv + evw − euw ≤ 1 (3)

euv − evw + euw ≤ 1 (4)

−euv + evw + euw ≤ 1 (5)

We can shrink the ILP by substituting euv = 0 for u 6= v ∈ V, χ(u) = χ(v).
Finally, the objective is to minimize

∑
{u,v}∈E δ(u, v)euv.

Compared to the formulation from Section 2.2, an advantage of this formula-
tion is that it has only polynomially many constraints, as opposed to exponentially
many, and therefore can often be stated explicitly. However, the number of con-
straints is 3

(
n
3

)
= O(n3), and thus can get easily too large for memory. Therefore,

we also implement here a row generation scheme. We find violated inequalities
by a simple brute-force search. When finding a violated inequality involving
vertices u, v, w, we add all three inequalities (3)–(5), since we found this to be
more efficient in our experiments.

2.4 Cutting Planes

As mentioned, the effectiveness of ILP solvers comes from the power of the
relaxation. We enhance this by adding cutting planes, which are valid constraints
that cut off fractional solutions. This scheme is called branch-and-cut. As demon-
strated in Section 3, this addition to generic Clique Partitioning or Hitting
Set approaches is necessary to obtain competitive performance.

First, since for both the Hitting Set and the Clique Partitioning formu-
lation we are using row generation, we can check if already a fractional solution
violates a problem-defining constraint. This allows to improve the relaxation
and to cut off infeasible solutions earlier in the search tree. For the hitting set
formulation, violated constraints can be found by a modified breadth-first search
from each vertex that considers the current variable values, and for the clique
partitioning model, violated constraints can be found by a simple brute-force
search.

5

Chopra and Rao [7] suggest several cutting planes for Multiway Cut, the
special case of Multi-Multiway Cut with c = 1. Each color of a Colorful
Components instance induces a Multiway Cut polytope. The Colorful
Components polytope is thus an intersection of several multiway cut polytopes.
Therefore, these cutting planes are valid for Colorful Components, too. We
present them here for the Clique Partitioning formulation.

Let T = (VT , ET) be a subgraph of G that is a tree such that all leaves L of
the tree have color c, but no inner vertex has. Then the inequality∑

uv∈ET

euv ≤ (|ET | − |L|) + 1 (6)

is called a tree inequality. Note that for |L| = 2, we get a path inequality (1).
There are exponentially many tree inequalities. Therefore, we consider only tree
inequalities with one (star inequalities) or two internal vertices. We can also apply
these cuts for the Hitting Set formulation: we need to substitute euv = 1− duv
and restrict the sums to edges present in the graph. In our implementation of the
Hitting Set row generation scheme, we add all initially violated star inequalities
at once. Note that this already covers all length-2 bad paths.

2.5 Heuristics

One advantage of having an algorithm that is able to solve large-scale instances
optimally is that we can evaluate heuristics more precisely. Our merge heuristic
was shown to be quite successful [4], and as greedy vertex moving was shown
to perform better than a merge strategy [10] for density-based partitioning,
we wanted to compare the two. We examine our previous heuristic [4], which
outperformed the one proposed by Corel et al. [8]. For completeness, we briefly
recall this greedy heuristic [4]. The idea is to repeatedly merge the two vertices
“most likely” to be in the same component. During the process, we immediately
delete edges connecting vertices with identical colors. Thus, we can determine the
merge cost of two vertices u and v as the weight of the edges that would need to
be deleted in this way when merging u and v. The cut cost is an approximation
of the minimum cut between u and v obtained by looking only at their common
neighbors. We then repeatedly merge the endpoints of the edge that maximizes
cut cost minus merge cost.

The second heuristic we consider is greedy vertex moving as proposed by
Görke et al. [10]. Here we start with singleton clusters, that is, every cluster
contains exactly one vertex. Then, we consider all possible ways of moving one
vertex from a cluster to another. Of these possibilities, we greedily perform the
one that decreases the number of inter-cluster edges the most without violating
the colorfulness condition. After no improvement is possible anymore, clusters
are merged into vertices and the procedure is applied recursively.

6

3 Experiments

We performed experiments both to evaluate the model and to compare the
three solution approaches. The ILP approaches were implemented in C++ using
the CPLEX 12.4 ILP solver. The experimental data and the code are available
at http://fpt.akt.tu-berlin.de/colcom/. The test machine is a 3.6 GHz Intel Xeon
E5-1620 with 10 MB L3 cache and 64 GB main memory, running under Debian
GNU/Linux 7.0. Only a single thread was used.

Each connected component is solved separately. We use data reduction as
described by [4] before starting the solver. This actually yields an instance of
the more general weighted Multi-Multiway Cut problem. Adapting the ILP
formulations above to this problem is straightforward. We further use the result
of the merge-based heuristic (Section 2.5) as MIP start (that is, we pass this
solution to the ILP solver such that it can start with a good upper bound).

3.1 Medium-Sized Wikipedia Graphs

To construct the Wikipedia interlanguage graph, we downloaded the freely-
available Wikipedia interlanguage links and page data dumps from January 9th,
2012. We chose a set of seven languages: English, Spanish, German, French,
Russian, Chinese and Hebrew. We then created the graph as described in the
introduction, with vertices as pages and a link between two pages if one has an
interlanguage link to the other. As suggested by de Melo and Weikum [13], we
weigh the edges as follows: If two pages link to each other, the edge receives a
weight of 2. Otherwise, the weight is 1. The graph contains 4,090,160 vertices
and 9,666,439 edges in 1,332,253 connected components. The largest connected
component has size 409. Of these components, 1,252,627 are already colorful.

We then found the colorful components using the Clique Partitioning
algorithm from Section 2.3, in 54 seconds. The merge-based heuristic obtained
a solution that was 0.22% off the optimum, taking 38 seconds, and the greedy
vertex moving was 0.90 % off, taking 37 seconds. Note that our implementations
of the heuristics have not been optimized for speed.

The cost of the optimal solution is 188,843, deleting 184,759 edges. After
removing the edges of the solution we had 1,432,822 colorful components. We
obtained 1,355,641 colorful components of size > 1, each corresponding to an
entry in several languages. A little less than half of the colorful components
contain two vertices, 20% contain three vertices, 11%, 6%, 3%, 2% contain four,
five, six and seven vertices, respectively. The remaining components are singletons.
In each colorful component that is not already a clique, two vertices that are not
already connected by an edge represent two pages in different languages that
should have a new inter-language link between them. Overall, we found 52,058
such new links. To get an idea of the correctness of these links we looked at the
Hebrew and English pages and manually checked the new links between them.
For example, we identified missing links between “data compression” and its
Hebrew counterpart, and “scientific literature” and the equivalent Hebrew entry,
which was previously linking to the less fitting “academic publishing”.

7

http://fpt.akt.tu-berlin.de/colcom/

ןקניש

Пармская ветчина

火腿

Prosciutto crudo

Prosciutto di Parma

Jambon de Parme

JamónProsciutto

Пршут Parmaschinken

Прошутто

Ham

וטושורפ

Prosciutto

Ветчина

Jamón de Parma

Окорок

Schinken

Jambon

(a) A single connected component in the
Wikipedia graph, disambiguating different
types of pork. The English page “Prosci-
utto” is connected both to the correct
“Prosciutto” cluster and to the “Ham” clus-
ter. The Colorful Components algo-
rithm separates the two correctly.

Mir

KOKUYO/工作區20

Мир

Mir (Raumstation)

Мир (орбитальная станция)

Mir (Band)

רימ

Aalox/Mir RU2

Mir

Mir (estación espacial)

和平号空间站

和平號太空站

MIR (estación espacial)

Mir (station spatiale)

Mir (disambiguation)

)ללח תנחת(רימ

רימ ללחה תנחת

MirMIR

(b) A single connected component in
the Wikipedia graph, regarding the term
“MIR”. The algorithm successfully separates
the cluster of entries corresponding to the
disambiguation of the term from the clus-
ter centering on the MIR space station.
The outlier for the band MIR is now also
disconnected.

Fig. 1. Two connected components in the Wikipedia graph. Green edges have been
inserted and dotted red edges have been deleted by the algorithm.

Figures 1(a) and 1(b) demonstrate results of the algorithm. In both cases the
algorithm successfully separates clusters representing related, but not identical
terms and identifies outliers.

3.2 Large-Scale Wikipedia Graphs

To test our fastest ILP formulation (Clique Partitioning) and the heuristics
on even larger inputs, we downloaded Wikipedia interlanguage link data for
the largest 30 languages3 on 7 June 2012. To decrease noise, we excluded user
pages and other special pages. The resulting instance has 11,977,500 vertices
and 46,695,719 edges. Of the 2,698,241 connected components, 225,760 are not
colorful, the largest of which has 1,828 vertices and 14,403 edges. The instance
can be solved optimally in about 80 minutes (we cannot give a more precise
figure since because of memory constraints, we had to run our implementation
on a different machine that was also loaded with other tasks). In the solution,
618,660 edges are deleted, and the insertion of 434,849 can be inferred. The
merge-based heuristic has an error of 0.81 %. Solving the largest component takes
182 seconds; 10.2 % of the edges are deleted. The merge-based heuristic takes
13.4 seconds, with 1.15 % error. The languages in the component are similarly
distributed as in the overall graph. It contains mostly terms related to companies,
in particular different legal forms of these, and family relationships. We noted that
many inconsistencies have been introduced by bots that aim to fill in “missing”

3 http://meta.wikimedia.org/wiki/List of Wikipedias

8

http://meta.wikimedia.org/wiki/List_of_Wikipedias

translations; for example, the Hungarian word “Részvény” (stock) is wrongly
linked to the term for “free float” in many languages.

3.3 Random Graphs

To compare the performance of our approaches, we generated a benchmark set
of random instances. The model is the recovery of colorful components that have
been perturbed. More precisely, the model has five parameters: c is the number
of colors; n is the number of vertices; pv is the probability that a component
contains a vertex of a certain color; pe is the probability that between two vertices
in a component there is an edge; px is the probability that between two vertices
from different components there is an edge.

Clearly, for the instances to be meaningful, pe must be much higher than px.
We first generate a benchmark set of 243 instances with parameters similar to
those of the largest connected components in the 7-language Wikipedia instance.
Note that since each instance models a connected component, they are much
smaller than a typical real-world instance.

Based on the parameters corresponding to the largest connected components
in the Wikipedia instance, we choose the parameters as follows: c ∈ {3, 5, 8}, n ∈
{60, 100, 170}, pv ∈ {0.4, 0.6, 0.9}, pe ∈ {0.4, 0.6, 0.9}, and px ∈ {0.01, 0.02, 0.04}.
In Fig. 2(a), we compare the running times for the three approaches and addi-
tionally the branching algorithm from [4], with a time limit of 15 minutes. The
branching algorithm is clearly not competitive. Among the ILP based approaches,
the Clique Partitioning formulation eventually comes out as a winner. All
instances with n = 60 are solved, and only 4 of the n = 100 instances remain
unsolved, all of which have px = 0.04. The performance of the row generation
scheme is somewhat disappointing, solving less instances than the implicit hitting
set formulation. One possible reason is that for the implicit hitting set formula-
tion, the solver is able to employ its presolve functions to simplify the instance.
Further tuning and application of cutting planes might give the row generation
scheme an advantage, though.

We now compare the effect of varying a single parameter, starting with the
base parameters n = 70, c = 6, pv = 0.6, pe = 0.7, and px = 0.03. We set a
timeout of 5 minutes. In Fig. 2(b), the exponential growth of the running time
when increasing the instance size is clearly visible. This is as expected for an
exact approach to an NP-hard problem. In Fig. 2(c), we vary the number c of
colors. The running time grows with more colors, but remains manageable. The
parameter pv does not seem to have a large effect on running times (Fig. 2(d));
the approach copes well even with components with many missing vertices. For
the parameter pe (Fig. 2(e)), we note lower running times for high values. This
matches intuition, since dense clusters should be easier to identify. The running
time is also lower for small values; this can probably be explained by the fact that
such instances have overall very few edges. Finally, we see that the parameter px,
which models the number of “errors” in the instance, has a large influence on
running time (Fig. 2(f)); in fact, the running time also seems to grow exponentially
with this parameter.

9

10-2 10-1 100 101 102

time (s)

0

20

40

60

80

100

in
st

an
ce

s
so

lv
ed

 (%
)

Implicit Hitting Set
Hitting Set row generation
Clique Partitioning ILP
Clique Partitioning w/o cuts
Branching

(a) Running times for the benchmark set

40 60 80 100 120 140
n

10-2

10-1

100

101

102

tim
e

(s
)

(b) Running time dependence on n

0 5 10 15 20 25 30 35
c

10-2

10-1

100

101

102

tim
e

(s
)

(c) Running time dependence on c

0.0 0.2 0.4 0.6 0.8 1.0
pv

10-2

10-1

100

101

102

tim
e

(s
)

(d) Running time dependence on pv

0.0 0.2 0.4 0.6 0.8 1.0
pe

10-2

10-1

100

101

102

tim
e

(s
)

(e) Running time dependence on pe

0.03 0.04 0.05 0.06 0.07 0.08
px

10-2

10-1

100

101

102

tim
e

(s
)

(f) Running time dependence on px

Fig. 2. Running times for synthetic Colorful Components instances

10

Finally, we examine the performance of the heuristics (Section 2.5) on the
benchmark set for those 213 instances where we know the optimal solution. The
maximum running time for an instance is 0.4 s for both heuristics. The merge-
based heuristic finds an optimal solution for 124 instances; the average error
is 0.86 % and the maximum 12.5 %. The move-based heuristic finds an optimal
solution for 55 instances; the average error is 4.9 % and the maximum 38.7 %.

Discussion. The most critical parameter that determines whether the exact
methods can successfully be employed is the amount of inter-cluster edges (that
is, the solution size), since it determines both the size n of connected components
and the parameter px. If this value is small enough, then even very large instances
like the Wikipedia interlanguage network can be solved optimally. Otherwise,
the merge-based heuristic provides excellent results typically very close to the
optimum.

Among the exact approaches, the Clique Partitioning ILP formulation
performs better than the implicit hitting set approach, but its implementation is
tied to a specific solver (in our case, the proprietary CPLEX), while the implicit
hitting set approach can easily be adapted to any ILP solver including free
software solvers. Thus, there are use cases for both, while the Hitting Set row
generation does not seem like a good option in its current form.

Similar to our previous results for multiple sequence alignment [4], the merge-
based heuristic gives an excellent approximation here. It also clearly outperforms
a move-based approach, in contrast to the results of Görke et al. [10] for density-
based clustering. A possible explanation is that the merge-based heuristic already
takes the color constraints into account when determining the cost of a modifica-
tion, and not only for its feasibility.

4 Outlook

There are several ways the methods presented here could be improved. For the
implicit hitting set, there are many further ways to tune it [15]. For the ILPs, it
would be interesting to find cutting planes that take vertices of more than one
color into account. In ongoing work, we experimented with a column generation
approach based on the Clique Partitioning model, using a greedy heuristic
and an ILP formulation for solving the column generation subproblem. While
on the synthetic data it is slower than the other ILP-based approaches with a
time limit of 10 seconds, it can solve almost as many instances as the fastest
approach after 15 minutes. Thus, it seems to be a good candidate for solving
even larger-scale problems. As a next natural step, one should also see whether
our mathematical programming solving methods for Colorful Components
which are based on Weighted Multi-Multiway Cut formulations extend
to applications where one actually needs to solve the more general Weighted
Multi-Multiway Cut. For instance, cleansing of taxonomies [12] would be a
natural candidate.

Concerning applications and modeling, there are several ways to expand our
results. First, we currently only demand a cluster to be a connected subgraph;

11

further restrictions on its density might be useful. Also, for some applications the
conditions on colors in a component might be relaxed, for example by allowing a
constant number of duplicates per component. Finally, finding further applications
would be interesting. We briefly sketch one candidate application here. Consider
a graph where each vertex corresponds to a user profile in a social network,
two profiles are adjacent when they are similar, and the color of a vertex is the
network (Twitter etc.). Then, Colorful Components could be used to identify
groups of profiles that correspond to the same natural person, assuming that
every person has at most one profile in each network.

References

[1] M. V. Ashley, T. Y. Berger-Wolf, W. Chaovalitwongse, B. DasGupta, A. Khokhar,
and S. Sheikh. An implicit cover problem in wild population study. Discrete
Mathematics, Algorithms and Applications, 2(1):21–31, 2010.

[2] A. Avidor and M. Langberg. The multi-multiway cut problem. Theoretical
Computer Science, 377(1–3):35–42, 2007.

[3] L. Bolikowski. Scale-free topology of the interlanguage links in Wikipedia. Technical
Report arXiv:0904.0564v2, arXiv, 2009.

[4] S. Bruckner, F. Hüffner, C. Komusiewicz, R. Niedermeier, S. Thiel, and J. Uhlmann.
Partitioning into colorful components by minimum edge deletions. In Proc. 23rd
CPM, volume 7354 of LNCS, pages 56–69. Springer, 2012.

[5] S. Böcker, S. Briesemeister, and G. W. Klau. Exact algorithms for cluster editing:
Evaluation and experiments. Algorithmica, 60(2):316–334, 2011.

[6] K. Chandrasekaran, R. M. Karp, E. Moreno-Centeno, and S. Vempala. Algorithms
for implicit hitting set problems. In Proc. 22nd SODA, pages 614–629. SIAM,
2011.

[7] S. Chopra and M. R. Rao. On the multiway cut polyhedron. Networks, 21(1):
51–89, 1991.

[8] E. Corel, F. Pitschi, and B. Morgenstern. A min-cut algorithm for the consistency
problem in multiple sequence alignment. Bioinformatics, 26(8):1015–1021, 2010.

[9] M. Grötschel and Y. Wakabayashi. A cutting plane algorithm for a clustering
problem. Mathematical Programming, 45(1–3):59–96, 1989.

[10] R. Görke, A. Schumm, and D. Wagner. Experiments on density-constrained graph
clustering. In Proc. 2012 ALENEX, pages 1–15. SIAM, 2012.

[11] R. M. Karp. Heuristic algorithms in computational molecular biology. Journal of
Computer and System Sciences, 77(1):122–128, 2011.

[12] T. Lee, Z. Wang, H. Wang, and S. Hwang. Web scale taxonomy cleansing. In
Proceedings of the VLDB Endowment, volume 4, pages 1295–1306, 2011.

[13] G. de Melo and G. Weikum. Untangling the cross-lingual link structure of Wikipedia.
In Proc. 48th ACL, pages 844–853. ACM, 2010.

[14] G. de Melo and G. Weikum. MENTA: inducing multilingual taxonomies from
Wikipedia. In Proc. 19th CIKM, pages 1099–1108. ACM, 2010.

[15] E. Moreno-Centeno and R. M. Karp. The implicit hitting set approach to solve
combinatorial optimization problems with an application to multigenome alignment.
Operations Research, 2013. To appear.

[16] M. Oosten, J. H. G. C. Rutten, and F. C. R. Spieksma. The clique partitioning
problem: Facets and patching facets. Networks, 38(4):209–226, 2001.

[17] S. Régnier. Sur quelques aspects mathématiques des problèmes de classification
automatique. I.C.C. Bulletin, 4:175–191, 1965.

12

	Evaluation of ILP-based Approaches for Partitioning into Colorful Components

