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Parameterization for hard problems

For exact algorithms for NP-hard problems, we probably have to
accept exponential runtimes.
Approach: Try to confine the combinatorial explosion to some
parameter k.

Definition
For some parameter k of a problem, the problem is called
fixed-parameter tractable with respect to k if there is an algorithm
that solves it in f (k) · nO(1).
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Finding Parameters

Usually, many parameters are sensible.

Example

Vertex Cover: Given a graph G = (V ,E ) and an integer k, is
there V ′ ⊆ V with |V ′| ≤ k such that each edge has at least one
endpoint in V ′?

I Parameterization by solution size:
If the vertex cover has size k:
O(1.3k + kn) time algorithm

I Parameterization by structure:
If treewidth is bounded by w :
O(2w · n) time algorithm
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Task: Find a minimal length tour through all points
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Trivial case: all vertices on the border of a convex region

I Walk all vertices in clockwise order
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Simple cases of the 2D-Traveling Salesman

Problem

Nearly trivial case: one vertex inside the border of a convex region

I Few possibilities; polynomial time



Parameterized 2D-Traveling Salesman Problem

Generalized question:
How fast can we solve 2D-Traveling Salesman Problem for
an instance with k points inside of the convex hull?
[Dĕıneko, Hoffmann, Okamoto&Woeginger, COCOON’04]

Theorem
2D-Traveling Salesman Problem with k inner points can be
solved in O(2k · k2 · n) time.



Negative Results for Distance from Triviality
Parameterization

Graph Coloring [Leizhen Cai, Discrete Appl. Math. 2003]

Is there a vertex coloring of a graph with c colors such that no
edge joins vertices of equal colors?

I NP-complete in general, but polynomial time solvable on split
graphs and bipartite graphs

Is there a coloring for a graph that originates from a

I split graph by adding k edges?

I split graph by adding k vertices?

I bipartite graph by adding k edges?
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Negative Results for Distance from Triviality
Parameterization

Graph Coloring [Leizhen Cai, Discrete Appl. Math. 2003]

Is there a vertex coloring of a graph with c colors such that no
edge joins vertices of equal colors?

I NP-complete in general, but polynomial time solvable on split
graphs and bipartite graphs

Is there a coloring for a graph that originates from a

I split graph by adding k edges? — FPT

I split graph by adding k vertices? — W[1]-hard

I bipartite graph by adding k edges? — NP-c for k ≥ 3



Scheme for Parameterization by Distance from Triviality

Assume that we study a hard problem.

1. Determine efficiently solvable special cases
(e.g., the restriction to special graph classes)
—the triviality.

2. Identify useful distance measures from the triviality
(e.g., the treewidth of a graph)
—the (structural) parameter.



Case Studies



Power Dominating Set

Given a graph G , make all vertices become observed by choosing a
set of vertices M to carry monitoring devices ( ).

Observation rules:
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Power Dominating Set

I Power Dominating Set is NP-complete.
[Haynes, Hedetniemi, Hedetniemi&Henning SIAM J. Discrete Math.

2002]

I Power Dominating Set is APX-hard and W[1]-hard with
respect to the number of monitoring devices.
[Kneis, Mölle, Richter&Rossmanith 2004]

[Guo, Niedermeier&Raible FCT’05]

I There is a linear time algorithm solving Power
Dominating Set on trees.

Triviality: Trees.
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Idea for the linear time algorithm:

I Work layer-wise bottom-up from the leaves.

I Place a monitoring device in vertices with at least two
unobserved children.
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Power Dominating Set on Almost Trees

Distance from Triviality: Number of edges added.
First we consider a single added edge.

I Treat trees with linear time algorithm.

I We can prune observed edges and singleton vertices.

I Branch on first vertex for placing a monitoring device, solve
the rest in linear time.
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Power Dominating Set on Almost Trees

I Power Dominating Set on a tree with k edges added

I After treating trees, we additionally have joints.

Branch for each joint x :

I x gets a monitoring device
I x does not get a monitoring device

I Branch further according to the local effect of x
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Power Dominating Set on Almost Trees

I Power Dominating Set on a tree with k edges added

I After treating trees, we additionally have joints.

Branch for each joint x :
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I Branch further according to the local effect of x



Power Dominating Set on Almost Trees

Observation: The number of joints is bounded by 2k.
Therefore, the number of branches depends only on k, not on n:

Theorem
Power Dominating Set for a graph which originates from a
tree with k edges added is fixed-parameter tractable with respect
to k.



Clique

Input: A graph G and a nonnegative integer s.
Question: Does G contain a clique, that is, a complete
subgraph, of size s?

I NP-complete

I APX-hard

I W[1]-hard with respect to s



Clique

Input: A graph G and a nonnegative integer s.
Question: Does G contain a clique, that is, a complete
subgraph, of size s?

I NP-complete

I APX-hard

I W[1]-hard with respect to s



Clique

Input: A graph G and a nonnegative integer s.
Question: Does G contain a clique, that is, a complete
subgraph, of size s?

I NP-complete

I APX-hard

I W[1]-hard with respect to s



Clique

Input: A graph G and a nonnegative integer s.
Question: Does G contain a clique, that is, a complete
subgraph, of size s?

I NP-complete

I APX-hard

I W[1]-hard with respect to s



Clique on Cluster Graphs: Trivial Case

Definition
A cluster graph is a graph where every connected component is a
clique.

Triviality: Cluster graphs.



Clique on Nearly Cluster Graphs

Distance from Triviality: k edges added.

Solving Clique:

I Find the k added edges: O(1.53k + n3) time
[Gramm et al., Algorithmica 2004].

I Find the largest clique in the underlying cluster graph.

I Find the largest clique in the subgraph induced by the vertices
that gained in degree: O(1.222k) = O(1.49k) time
[Robson, J. Algorithms 1986].
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Clique on Nearly Cluster Graphs

Distance from Triviality: k edges added.

Solving Clique:

I Find the k added edges: O(1.53k + n3) time
[Gramm et al., Algorithmica 2004].

I Find the largest clique in the underlying cluster graph.

I Find the largest clique in the subgraph induced by the vertices
that gained in degree: O(1.222k) = O(1.49k) time
[Robson, J. Algorithms 1986].



Clique on Nearly Cluster Graphs

Theorem
Clique for a cluster graph with k edges added can be solved
in O(1.53k + n3) time.
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Tree-Like Set Cover

� �� �

� �� �

� �� �

� �� �

� �	 	


 
� �

� �
 


� �� �

� �� � � �� �

� �� �

� �� �

� �� �

� �� �

� �� �



Tree-Like Set Cover

� �� �

� �� �

� �� �

� �� �

� �	 	


 
� �

� �
 


� �� �

� �� � � �� �

� �� �

� �� �

� �� �

� �� �

� �� �



Tree-Like Set Cover

� �� �

� �� �

� �� �

� �� �

� �	 	


 
� �

� �
 


� �� �

� �� � � �� �

� �� �

� �� �

� �� �

� �� �

� �� �



Parameterizing Tree-Like Weighted Set Cover

[Guo&Niedermeier, Manuscript, June 2004]

I Tree-like Weighted Set Cover is NP-complete, even
with bounded number of occurrences per element.

I Tree-like Weighted Set Cover can be solved in
polynomial time if the underlying tree is a path.

Triviality: Subset trees that are paths.
Distance from Triviality: Number of leaves of the subset tree.

Theorem
Tree-like Weighted Set Cover with occurrence bounded
by d can be solved in O(2dk2 ·m2n) time, where k denotes the
number of the leaves of the subset tree.
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Longest Common Subsequence

I Longest Common Subsequence is NP-complete and
W[1]-hard for parameter “number of strings”

I Longest Common Subsequence can be solved in
polynomial time if all strings are permutations of 1 . . . n.

Triviality: Strings are permutations.
Distance from Triviality: Maximum occurrence number.

Theorem
Longest Common Subsequence of k strings can be solved
in O(22k log s · k · n2) time, where s denotes the maximum
occurrence number of a letter in an input string.
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Summary

Distance from triviality—a natural way of parameterizing a hard
problem X :

1. Determine efficiently solvable special cases of X—the triviality.

2. Identify useful distance measures from the triviality—the
(structural) parameter.

I Mostly structural results: How can we extend the range of
tractability?

I Might also lead to efficient practical implementations if the
parameter is small.


