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For exact algorithms for NP-hard problems, we probably have to
accept exponential runtimes.

Approach: Try to confine the combinatorial explosion to some
parameter k.

Definition

For some parameter k of a problem, the problem is called
fixed-parameter tractable with respect to k if there is an algorithm
that solves it in f(k) - n®(),



Finding Parameters

Usually, many parameters are sensible.

Example

VERTEX COVER: Given a graph G = (V/, E) and an integer k, is
there V/ C V with | V'] < k such that each edge has at least one
endpoint in V'?

» Parameterization by solution size:
If the vertex cover has size k:
O(1.3% + kn) time algorithm
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Usually, many parameters are sensible.

Example

VERTEX COVER: Given a graph G = (V/, E) and an integer k, is
there V/ C V with | V'] < k such that each edge has at least one
endpoint in V'?

» Parameterization by solution size:
If the vertex cover has size k:
O(1.3% + kn) time algorithm

» Parameterization by structure:

If treewidth is bounded by w:
O(2" - n) time algorithm
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Given: n points from R?
Task: Find a minimal length tour through all points
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Simple cases of the 2D-TRAVELING SALESMAN
PROBLEM

Nearly trivial case: one vertex inside the border of a convex region

» Few possibilities; polynomial time



Parameterized 2D-TRAVELING SALESMAN PROBLEM

Generalized question:
How fast can we solve 2D-TRAVELING SALESMAN PROBLEM for
an instance with k points inside of the convex hull?

[DEINEKO, HOFFMANN, OKAMOTO& WOEGINGER, COCOON’04]

Theorem
2D-TRAVELING SALESMAN PROBLEM with k inner points can be
solved in O(2% - k? - n) time.
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GRAPH COLORING [LEZHEN CAl, DISCRETE APPL. MATH. 2003]
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graphs and bipartite graphs
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Negative Results for Distance from Triviality
Parameterization

GRAPH COLORING [LEZHEN CAl, DISCRETE APPL. MATH. 2003]
Is there a vertex coloring of a graph with ¢ colors such that no
edge joins vertices of equal colors?

» NP-complete in general, but polynomial time solvable on split
graphs and bipartite graphs
Is there a coloring for a graph that originates from a
» split graph by adding k edges? — FPT
» split graph by adding k vertices? — W([1]-hard
» bipartite graph by adding k edges? — NP-c for kK > 3



Scheme for Parameterization by Distance from Triviality

Assume that we study a hard problem.
1. Determine efficiently solvable special cases
(e.g., the restriction to special graph classes)
—the triviality.
2. ldentify useful distance measures from the triviality
(e.g., the treewidth of a graph)
—the (structural) parameter.



Case Studies
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set of vertices M to carry monitoring devices (CJ).
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POwER DOMINATING SET

» POWER DOMINATING SET is NP-complete.
[HayNES, HEDETNIEMI, HEDETNIEMI&HENNING STAM J. DISCRETE MATH.
2002]

» POWER DOMINATING SET is APX-hard and W([1]-hard with
respect to the number of monitoring devices.
[KNEIS, MOLLE, RICHTER&ROSSMANITH 2004]
[Guo, NIEDERMEIER&RAIBLE FCT’05]

» There is a linear time algorithm solving POWER
DOMINATING SET on trees.

Triviality: Trees.
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POWER DOMINATING SET on Almost Trees

Distance from Triviality: Number of edges added.
First we consider a single added edge.

> Treat trees with linear time algorithm.

» We can prune observed edges and singleton vertices.

» Branch on first vertex for placing a monitoring device, solve
the rest in linear time.
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POWER DOMINATING SET on Almost Trees

» POWER DOMINATING SET on a tree with k edges added

> After treating trees, we additionally have joints.

Branch for each joint x:

> x gets a monitoring device
» x does not get a monitoring device
» Branch further according to the local effect of x



POWER DOMINATING SET on Almost Trees

Observation: The number of joints is bounded by 2k.
Therefore, the number of branches depends only on k, not on n:

Theorem
POWER DOMINATING SET for a graph which originates from a
tree with k edges added is fixed-parameter tractable with respect

to k.
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CLIQUE

Input: A graph G and a nonnegative integer s.
Question: Does G contain a clique, that is, a complete
subgraph, of size s?

» NP-complete
» APX-hard
» W][1]-hard with respect to s



CLIQUE on Cluster Graphs: Trivial Case

Definition
A cluster graph is a graph where every connected component is a
clique.

VAN

Triviality: Cluster graphs.
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CLIQUE on Nearly Cluster Graphs

Distance from Triviality: k edges added.

Solving CLIQUE:
» Find the k added edges: O(1.53% + n?®) time
[GRAMM et al., Algorithmica 2004].
» Find the largest clique in the underlying cluster graph.

» Find the largest clique in the subgraph induced by the vertices
that gained in degree: 0(1.222%) = O(1.49%) time
[ROBSON, J. Algorithms 1986].



CLIQUE on Nearly Cluster Graphs

Theorem
CLIQUE for a cluster graph with k edges added can be solved
in O(1.53% + n3) time.
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Parameterizing TREE-LIKE WEIGHTED SET COVER

[GUO&NIEDERMEIER, Manuscript, June 2004]

» TREE-LIKE WEIGHTED SET COVER is NP-complete, even
with bounded number of occurrences per element.

» TREE-LIKE WEIGHTED SET COVER can be solved in
polynomial time if the underlying tree is a path.
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Parameterizing TREE-LIKE WEIGHTED SET COVER

[GUO&NIEDERMEIER, Manuscript, June 2004]

» TREE-LIKE WEIGHTED SET COVER is NP-complete, even
with bounded number of occurrences per element.

» TREE-LIKE WEIGHTED SET COVER can be solved in
polynomial time if the underlying tree is a path.

Triviality: Subset trees that are paths.
Distance from Triviality: Number of leaves of the subset tree.

Theorem

TREE-LIKE WEIGHTED SET COVER with occurrence bounded
by d can be solved in O(29" - m?n) time, where k denotes the
number of the leaves of the subset tree.
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LONGEST COMMON SUBSEQUENCE

H Al sss=
EeCen B sOusd =
B Ous-Eeles] O=

» LONGEST COMMON SUBSEQUENCE is NP-complete and
WI[1]-hard for parameter “number of strings”

» LONGEST COMMON SUBSEQUENCE can be solved in
polynomial time if all strings are permutations of 1...n.

Triviality: Strings are permutations.
Distance from Triviality: Maximum occurrence number.

Theorem

LoNGEST COMMON SUBSEQUENCE of k strings can be solved
in O(22k°es . k. n?) time, where s denotes the maximum
occurrence number of a letter in an input string.



Summary

Distance from triviality—a natural way of parameterizing a hard
problem X:

1. Determine efficiently solvable special cases of X—the triviality.

2. ldentify useful distance measures from the triviality—the
(structural) parameter.

» Mostly structural results: How can we extend the range of
tractability?

» Might also lead to efficient practical implementations if the
parameter is small.



