A Structural View on Parameterizing Problems:
Distance from Triviality

Jiong Guo Falk Hiiffner Rolf Niedermeier

11th July 2006

DA

Parameterization for hard problems

For exact algorithms for NP-hard problems, we probably have to
accept exponential runtimes.
Approach: Try to confine the combinatorial explosion to some

parameter k.

Parameterization for hard problems

For exact algorithms for NP-hard problems, we probably have to
accept exponential runtimes.

Approach: Try to confine the combinatorial explosion to some
parameter k.

Definition

For some parameter k of a problem, the problem is called
fixed-parameter tractable with respect to k if there is an algorithm
that solves it in f(k) - n®(),

Finding Parameters

Usually, many parameters are sensible.

Example

VERTEX COVER: Given a graph G = (V/, E) and an integer k, is
there V/ C V with | V'] < k such that each edge has at least one
endpoint in V'?

» Parameterization by solution size:
If the vertex cover has size k:
O(1.3% + kn) time algorithm

Finding Parameters

Usually, many parameters are sensible.

Example

VERTEX COVER: Given a graph G = (V/, E) and an integer k, is
there V/ C V with | V'] < k such that each edge has at least one
endpoint in V'?

» Parameterization by solution size:
If the vertex cover has size k:
O(1.3% + kn) time algorithm

» Parameterization by structure:

If treewidth is bounded by w:
O(2" - n) time algorithm

2D-TRAVELING SALESMAN PROBLEM

Given: n points from R?

2D-TRAVELING SALESMAN PROBLEM

Given: n points from R?
Task: Find a minimal length tour through all points

Simple cases of the 2D-TRAVELING SALESMAN
PROBLEM

Trivial case: all vertices on the border of a convex region

Simple cases of the 2D-TRAVELING SALESMAN
PROBLEM

Trivial case: all vertices on the border of a convex region

» Walk all vertices in clockwise order

Simple cases of the 2D-TRAVELING SALESMAN
PROBLEM

Nearly trivial case: one vertex inside the border of a convex region

Simple cases of the 2D-TRAVELING SALESMAN
PROBLEM

Nearly trivial case: one vertex inside the border of a convex region

» Few possibilities; polynomial time

Parameterized 2D-TRAVELING SALESMAN PROBLEM

Generalized question:
How fast can we solve 2D-TRAVELING SALESMAN PROBLEM for
an instance with k points inside of the convex hull?

[DEINEKO, HOFFMANN, OKAMOTO& WOEGINGER, COCOON’04]

Theorem
2D-TRAVELING SALESMAN PROBLEM with k inner points can be
solved in O(2% - k? - n) time.

Negative Results for Distance from Triviality
Parameterization

GRAPH COLORING [LEZHEN CAl, DISCRETE APPL. MATH. 2003]
Is there a vertex coloring of a graph with ¢ colors such that no
edge joins vertices of equal colors?

» NP-complete in general, but polynomial time solvable on split
graphs and bipartite graphs

Negative Results for Distance from Triviality
Parameterization

GRAPH COLORING [LEZHEN CAl, DISCRETE APPL. MATH. 2003]
Is there a vertex coloring of a graph with ¢ colors such that no
edge joins vertices of equal colors?

» NP-complete in general, but polynomial time solvable on split
graphs and bipartite graphs

Is there a coloring for a graph that originates from a
» split graph by adding k edges?

Negative Results for Distance from Triviality
Parameterization

GRAPH COLORING [LEZHEN CAl, DISCRETE APPL. MATH. 2003]
Is there a vertex coloring of a graph with ¢ colors such that no
edge joins vertices of equal colors?

» NP-complete in general, but polynomial time solvable on split
graphs and bipartite graphs

Is there a coloring for a graph that originates from a
» split graph by adding k edges? — FPT

Negative Results for Distance from Triviality
Parameterization

GRAPH COLORING [LuizHEN CAl, DISCRETE APPL. MATH. 2003]
Is there a vertex coloring of a graph with ¢ colors such that no
edge joins vertices of equal colors?

» NP-complete in general, but polynomial time solvable on split
graphs and bipartite graphs
Is there a coloring for a graph that originates from a
» split graph by adding k edges? — FPT
» split graph by adding k vertices?

Negative Results for Distance from Triviality
Parameterization

GRAPH COLORING [LuizHEN CAl, DISCRETE APPL. MATH. 2003]
Is there a vertex coloring of a graph with ¢ colors such that no
edge joins vertices of equal colors?

» NP-complete in general, but polynomial time solvable on split
graphs and bipartite graphs
Is there a coloring for a graph that originates from a
» split graph by adding k edges? — FPT
» split graph by adding k vertices? — W([1]-hard

Negative Results for Distance from Triviality
Parameterization

GRAPH COLORING [LEZHEN CAl, DISCRETE APPL. MATH. 2003]
Is there a vertex coloring of a graph with ¢ colors such that no
edge joins vertices of equal colors?

» NP-complete in general, but polynomial time solvable on split
graphs and bipartite graphs
Is there a coloring for a graph that originates from a
» split graph by adding k edges? — FPT
» split graph by adding k vertices? — W([1]-hard
» bipartite graph by adding k edges?

Negative Results for Distance from Triviality
Parameterization

GRAPH COLORING [LEZHEN CAl, DISCRETE APPL. MATH. 2003]
Is there a vertex coloring of a graph with ¢ colors such that no
edge joins vertices of equal colors?

» NP-complete in general, but polynomial time solvable on split
graphs and bipartite graphs
Is there a coloring for a graph that originates from a
» split graph by adding k edges? — FPT
» split graph by adding k vertices? — W([1]-hard
» bipartite graph by adding k edges? — NP-c for kK > 3

Scheme for Parameterization by Distance from Triviality

Assume that we study a hard problem.
1. Determine efficiently solvable special cases
(e.g., the restriction to special graph classes)
—the triviality.
2. ldentify useful distance measures from the triviality
(e.g., the treewidth of a graph)
—the (structural) parameter.

Case Studies

POwER DOMINATING SET

Given a graph G, make all vertices become observed by choosing a
set of vertices M to carry monitoring devices (CJ).

POwER DOMINATING SET

Given a graph G, make all vertices become observed by choosing a
set of vertices M to carry monitoring devices (CJ).

Observation rules:

o

POwER DOMINATING SET

Given a graph G, make all vertices become observed by choosing a
set of vertices M to carry monitoring devices (CJ).

Observation rules:

—a
e

—

—

—a
s

POwER DOMINATING SET

» POWER DOMINATING SET is NP-complete.
[HayNES, HEDETNIEMI, HEDETNIEMI&HENNING STAM J. DISCRETE MATH.
2002]

POwER DOMINATING SET

» POWER DOMINATING SET is NP-complete.
[HayNES, HEDETNIEMI, HEDETNIEMI&HENNING STAM J. DISCRETE MATH.
2002]

» POWER DOMINATING SET is APX-hard and W([1]-hard with
respect to the number of monitoring devices.
[KNEIS, MOLLE, RICHTER&ROSSMANITH 2004]

[Guo, NIEDERMEIER&RAIBLE FCT’05]

POwER DOMINATING SET

» POWER DOMINATING SET is NP-complete.
[HayNES, HEDETNIEMI, HEDETNIEMI&HENNING STAM J. DISCRETE MATH.
2002]

» POWER DOMINATING SET is APX-hard and W([1]-hard with
respect to the number of monitoring devices.
[KNEIS, MOLLE, RICHTER&ROSSMANITH 2004]
[Guo, NIEDERMEIER&RAIBLE FCT’05]

» There is a linear time algorithm solving POWER
DOMINATING SET on trees.

Triviality: Trees.

POWER DOMINATING SET on Trees

Idea for the linear time algorithm:
» Work layer-wise bottom-up from the leaves.

» Place a monitoring device in vertices with at least two
unobserved children.

POWER DOMINATING SET on Trees

Idea for the linear time algorithm:
» Work layer-wise bottom-up from the leaves.

» Place a monitoring device in vertices with at least two
unobserved children.

POWER DOMINATING SET on Trees

Idea for the linear time algorithm:
» Work layer-wise bottom-up from the leaves.

» Place a monitoring device in vertices with at least two
unobserved children.

POWER DOMINATING SET on Trees

Idea for the linear time algorithm:
» Work layer-wise bottom-up from the leaves.

» Place a monitoring device in vertices with at least two
unobserved children.

POWER DOMINATING SET on Trees

Idea for the linear time algorithm:
» Work layer-wise bottom-up from the leaves.

» Place a monitoring device in vertices with at least two
unobserved children.

POWER DOMINATING SET on Trees

Idea for the linear time algorithm:
» Work layer-wise bottom-up from the leaves.

» Place a monitoring device in vertices with at least two
unobserved children.

POWER DOMINATING SET on Trees

Idea for the linear time algorithm:
» Work layer-wise bottom-up from the leaves.

» Place a monitoring device in vertices with at least two
unobserved children.

POWER DOMINATING SET on Trees

Idea for the linear time algorithm:
» Work layer-wise bottom-up from the leaves.

» Place a monitoring device in vertices with at least two
unobserved children.

POWER DOMINATING SET on Almost Trees

Distance from Triviality: Number of edges added.
First we consider a single added edge.

POWER DOMINATING SET on Almost Trees
Distance from Triviality: Number of edges added.
First we consider a single added edge.

» Treat trees with linear time algorithm.

» We can prune observed edges and singleton vertices.

POWER DOMINATING SET on Almost Trees
Distance from Triviality: Number of edges added.
First we consider a single added edge.

» Treat trees with linear time algorithm.

» We can prune observed edges and singleton vertices.

POWER DOMINATING SET on Almost Trees

Distance from Triviality: Number of edges added.
First we consider a single added edge.

> Treat trees with linear time algorithm.

» We can prune observed edges and singleton vertices.

» Branch on first vertex for placing a monitoring device, solve
the rest in linear time.

POWER DOMINATING SET on Almost Trees

» POWER DOMINATING SET on a tree with k edges added

POWER DOMINATING SET on Almost Trees

» POWER DOMINATING SET on a tree with k edges added

» After treating trees, we additionally have joints.

POWER DOMINATING SET on Almost Trees

» POWER DOMINATING SET on a tree with k edges added

> After treating trees, we additionally have joints.

Branch for each joint x:

> x gets a monitoring device
» x does not get a monitoring device
» Branch further according to the local effect of x

POWER DOMINATING SET on Almost Trees

Observation: The number of joints is bounded by 2k.
Therefore, the number of branches depends only on k, not on n:

Theorem
POWER DOMINATING SET for a graph which originates from a
tree with k edges added is fixed-parameter tractable with respect

to k.

CLIQUE

Input: A graph G and a nonnegative integer s.
Question: Does G contain a clique, that is, a complete
subgraph, of size s?

CLIQUE

Input: A graph G and a nonnegative integer s.
Question: Does G contain a clique, that is, a complete
subgraph, of size s?

» NP-complete

CLIQUE

Input: A graph G and a nonnegative integer s.
Question: Does G contain a clique, that is, a complete
subgraph, of size s?

» NP-complete
» APX-hard

CLIQUE

Input: A graph G and a nonnegative integer s.
Question: Does G contain a clique, that is, a complete
subgraph, of size s?

» NP-complete
» APX-hard
» W][1]-hard with respect to s

CLIQUE on Cluster Graphs: Trivial Case

Definition
A cluster graph is a graph where every connected component is a
clique.

VAN

Triviality: Cluster graphs.

CLIQUE on Nearly Cluster Graphs

Distance from Triviality: k edges added.

Solving CLIQUE:

CLIQUE on Nearly Cluster Graphs

Distance from Triviality: k edges added.

Solving CLIQUE:

» Find the k added edges: O(1.53% 4 n3) time
[GRAMM et al., Algorithmica 2004].

CLIQUE on Nearly Cluster Graphs

Distance from Triviality: k edges added.

Solving CLIQUE:

» Find the k added edges: O(1.53% 4 n3) time
[GRAMM et al., Algorithmica 2004].

» Find the largest clique in the underlying cluster graph.

CLIQUE on Nearly Cluster Graphs

Distance from Triviality: k edges added.

Solving CLIQUE:
» Find the k added edges: O(1.53% + n?®) time
[GRAMM et al., Algorithmica 2004].
» Find the largest clique in the underlying cluster graph.

» Find the largest clique in the subgraph induced by the vertices
that gained in degree: 0(1.222%) = O(1.49%) time
[ROBSON, J. Algorithms 1986].

CLIQUE on Nearly Cluster Graphs

Distance from Triviality: k edges added.

Solving CLIQUE:
» Find the k added edges: O(1.53% + n?®) time
[GRAMM et al., Algorithmica 2004].
» Find the largest clique in the underlying cluster graph.

» Find the largest clique in the subgraph induced by the vertices
that gained in degree: 0(1.222%) = O(1.49%) time
[ROBSON, J. Algorithms 1986].

CLIQUE on Nearly Cluster Graphs

Distance from Triviality: k edges added.

Solving CLIQUE:
» Find the k added edges: O(1.53% + n?®) time
[GRAMM et al., Algorithmica 2004].
» Find the largest clique in the underlying cluster graph.

» Find the largest clique in the subgraph induced by the vertices
that gained in degree: 0(1.222%) = O(1.49%) time
[ROBSON, J. Algorithms 1986].

CLIQUE on Nearly Cluster Graphs

Theorem
CLIQUE for a cluster graph with k edges added can be solved
in O(1.53% + n3) time.

000008

060008

009008

Tree-Like SET COVER

Tree-Like SET COVER

Parameterizing TREE-LIKE WEIGHTED SET COVER

[GUO&NIEDERMEIER, Manuscript, June 2004]

» TREE-LIKE WEIGHTED SET COVER is NP-complete, even
with bounded number of occurrences per element.

» TREE-LIKE WEIGHTED SET COVER can be solved in
polynomial time if the underlying tree is a path.

Parameterizing TREE-LIKE WEIGHTED SET COVER

[GUO&NIEDERMEIER, Manuscript, June 2004]

» TREE-LIKE WEIGHTED SET COVER is NP-complete, even
with bounded number of occurrences per element.

» TREE-LIKE WEIGHTED SET COVER can be solved in
polynomial time if the underlying tree is a path.

Triviality: Subset trees that are paths.

Parameterizing TREE-LIKE WEIGHTED SET COVER

[GUO&NIEDERMEIER, Manuscript, June 2004]

» TREE-LIKE WEIGHTED SET COVER is NP-complete, even
with bounded number of occurrences per element.

» TREE-LIKE WEIGHTED SET COVER can be solved in
polynomial time if the underlying tree is a path.

Triviality: Subset trees that are paths.
Distance from Triviality: Number of leaves of the subset tree.

Theorem

TREE-LIKE WEIGHTED SET COVER with occurrence bounded
by d can be solved in O(29" - m?n) time, where k denotes the
number of the leaves of the subset tree.

LONGEST COMMON SUBSEQUENCE

LONGEST COMMON SUBSEQUENCE

H Al sss=
EeCen B sOusd =
B Ous-Eeles] O=

LONGEST COMMON SUBSEQUENCE

H Al sss=
EeCen B sOusd =
B Ous-Eeles] O=

» LONGEST COMMON SUBSEQUENCE is NP-complete and
WI[1]-hard for parameter “number of strings”

LONGEST COMMON SUBSEQUENCE

H Al sss=
EeCen B sOusd =
B Ous-Eeles] O=

» LONGEST COMMON SUBSEQUENCE is NP-complete and
WI[1]-hard for parameter “number of strings”

» LONGEST COMMON SUBSEQUENCE can be solved in
polynomial time if all strings are permutations of 1...n.

Triviality: Strings are permutations.

LONGEST COMMON SUBSEQUENCE

H Al sss=
EeCen B sOusd =
B Ous-Eeles] O=

» LONGEST COMMON SUBSEQUENCE is NP-complete and
WI[1]-hard for parameter “number of strings”

» LONGEST COMMON SUBSEQUENCE can be solved in
polynomial time if all strings are permutations of 1...n.

Triviality: Strings are permutations.
Distance from Triviality: Maximum occurrence number.

Theorem

LoNGEST COMMON SUBSEQUENCE of k strings can be solved
in O(22k°es . k. n?) time, where s denotes the maximum
occurrence number of a letter in an input string.

Summary

Distance from triviality—a natural way of parameterizing a hard
problem X:

1. Determine efficiently solvable special cases of X—the triviality.

2. ldentify useful distance measures from the triviality—the
(structural) parameter.

» Mostly structural results: How can we extend the range of
tractability?

» Might also lead to efficient practical implementations if the
parameter is small.

