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Abstract

In this paper, we introduce and analyze two graph-based models for assigning
orthologs in the presence of whole-genome duplications, using similarity infor-
mation between pairs of genes. The common feature of our two models is that
genes of the first genome may be assigned two orthologs from the second genome,
which has undergone a whole-genome duplication. Additionally, our models in-
corporate the new notion of duplication bonus, a parameter that reflects how
assigning two orthologs to a given gene should be rewarded or penalized. Our
work is mainly focused on developing exact and reasonably time-consuming al-
gorithms for these two models: we show that the first one is polynomial-time
solvable, while the second is NP-hard. For the latter, we thus design two fixed-
parameter algorithms, i.e. exact algorithms whose running times are exponen-
tial only with respect to a small and well-chosen input parameter. Finally, for
both models, we evaluate our algorithms on pairs of plant genomes. Our experi-
ments show that the NP-hard model yields a better cluster quality at the cost of
lower coverage, due to the fact that our instances cannot be completely solved
by our algorithms. However, our results are altogether encouraging and show
that our methods yield biologically significant predictions of orthologs when the
duplication bonus value is properly chosen.
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1. Introduction

Identifying orthologous genes between two or more different species is a
ubiquitous task in computational biology that plays an important role in phy-
logenetic tree inference, genome annotation and gene function prediction. Over
the last few decades, a very large literature has been devoted to it – see among
others e.g. [1–3] for recent surveys and benchmarking efforts on the subject.

A wide range of methods and accompanying software has been proposed to
the community, which differ in many features, such as the combinatorial model,
the optimization criteria, or the algorithmic strategies. In this paper, we focus
our attention on graph-based models, and our goal in terms of resolution strat-
egy is to provide methods that are both exact and reasonably time-consuming.
For this, we chose, as a first step, to use an optimization criterion that only relies
on sequence similarities between genes, similarly to e.g. [4, 5], although other
methods also take further information into account such as relative positions of
the genes [6–8].

Our work is initially based on work by Zheng et al. [5] who proposed the
following two-step framework to identify groups of orthologous genes. First,
compute a graph whose vertices correspond to the genes from the different
species: an edge in the graph is present if the two corresponding genes are from
different species and if it is plausible to consider these two vertices as orthologs.
A simple way to build such a graph is to first compute sequence similarity scores
between the genes of the two species and then add an edge between a pair of
vertices if the corresponding sequence similarity exceeds a predefined thresh-
old [9]. More sophisticated approaches take further information into account,
obtained for example by synteny block construction [5] or by analyzing the pro-
tein interaction networks of the respective species [10]. The second step in the
framework is to identify disjoint groups of orthologs such that, roughly speak-
ing, there are many edges inside the identified groups and few edges between
them. In the basic setting of Zheng et al. [5], each group of orthologs contains
at most one gene from each species. However, this constraint is too strict in the
presence of whole-genome duplications, which occur relatively frequently during
plant evolution. Therefore, Zheng et al. [5] also considered a relaxed definition
of orthology groups, where a predetermined subset of the species is allowed to
have two genes in each orthology group.

The above-described model from Zheng et al. [5] is the starting point of this
paper. More specifically, we focus our attention on the special case in which we
aim to identify disjoint groups of orthologous genes from two species and where
exactly one of the two species has been subject to a whole-genome duplication
since the speciation event. We then extend this model in two directions: first,
we introduce a new parameter d, the duplication bonus, that is applied each time
where, in our solution, a gene is assigned two orthologous genes in the other
species (a 1–2 orthology). We call this new problem Orthology Assignment
with Duplications (OAD). Second, in addition to the duplication bonus, we
now allow three different types of orthology clusters in a solution: 1-1 orthology,
and two specific types of 1-2 orthologies that both require a minimum level of
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similarity between the genes of the two species. We call this second problem Or-
thology Clustering with Duplications (OCD). Our goal in the present
work is twofold: first, to provide a deep algorithmic study of both problems that
allows us to design exact and reasonably time-consuming (i.e., polynomial-time
or fixed-parameter tractable) algorithms. Second, through several experiments
on real data, to determine whether the proposed models are relevant, notably
concerning the duplication bonus. Possible extensions of this model towards
more elaborate ones are a natural follow-up of the present work.

Related Work. We first note that Orthology Assignment with Duplica-
tions, in the specific case where d = 0, is a particular case of the well-studied
capacitated transportation problem (see for instance [11] for a formal definition).
It can also be seen that it is equivalent to the Degree Constrained Sub-
graph (or DCS) problem, in which the input consists of an edge-weighted graph
G = (V,E) with V = {v1, v2, . . . , vn} and a set I = {[l1, u1], [l2, u2], . . . , [ln, un]}
of intervals such that for each 1 ≤ i ≤ n we have li ≤ ui ≤ dG(vi) (where
dG(vi) represents the degree of vi in G). In the DCS problem we aim to find
a maximum edge weighted subgraph G′ of G such that for each 1 ≤ i ≤ n
we have li ≤ dG′(vi) ≤ ui. It is easy to see that, for any instance of our
Orthology Assignment with Duplications problem with d = 0, we can
transform it into an instance for DCS by taking the same graph G together
with its edge-cost function, and by setting (i) [li, ui] = [0, 2] for each vertex rep-
resenting a gene in the genome having undergone a whole-genome duplication
event, and (ii) [li, ui] = [0, 1] for each vertex in the other genome. In that case,
both problems have the same optimal solution. DCS has been shown to be
polynomial-time solvable (see e.g. [12]). However, to our knowledge, the general
case with an arbitrary duplication bonus d 6= 0 has not been studied before. The
Orthology Clustering with Duplications problem is, to our knowledge,
introduced for the first time in the present paper.

The complexity of related assignment problems for more than two genomes
has been previously studied in the literature. The case of three genomes [5] is
NP-hard even if duplications are not considered [13] – in this setting, one allows
at most one gene of each genome to be in an orthologous group and one wants
to maximize the number of edges that are in orthologous groups.

Zheng et al. [5] also proposed to assign the score for a cluster of orthologs
based on its size. More precisely, each group of orthologs must induce a con-
nected subgraph and the score is the number of edges in the transitive closure
of this subgraph. For this scoring function, the computational problem to find a
maximum-score orthology assignment is also NP-hard if the number of genomes
is at least three [14, 15] and it is fixed-parameter tractable with respect to the
score of the optimum solution [16]. The special case with two genomes, where
the genes of exactly one of them may occur twice in each cluster of orthologs,
is the special case of OAD with unit weights and duplication bonus d = 1.
Adamaszek et al. [14] note that this special case can be solved using a matching
algorithm without giving details.
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Our Contribution. As mentioned above, this paper is primarily concerned with
an algorithmic study of problems OAD and OCD. In Section 3, we show that
OAD can be solved in O(

√
n · m) time for any duplication bonus. Since the

basic idea is to reduce to maximum-weight matching problems, this means that
improving the running time for OAD would imply an improved running time
for maximum-weight matching in general graphs. In contrast, in Section 4 we
show that OCD is NP-hard even if each edge weight is one. On the posi-
tive side, we give two fixed-parameter algorithms for OCD with running times
O(2kB · (m + n)) and O(3kW ·

√
n · m), respectively. Herein, n is the number

of vertices of the graph representing our problem, m is its number of edges,
and kB , kW are parameters that measure how far the instance is from certain
types of polynomial-time solvable instances. Both parameters are smaller than
the number k of edges that are discarded by an optimal solution. In Section 5,
we experimentally run OAD and OCD for three plant species using the algo-
rithms we have developed, and perform a preliminary comparison with InPara-
noid [4, 17–20], a well established graph-based orthology assignment software
using similarity information between pairs of genes. Unsurprisingly, our results
indicate that, in terms of execution time, OAD can be solved efficiently and
that solving OCD is much more challenging as only parts of the instances can
be solved exactly. For OCD, however, cluster quality is higher than for OAD.
The experiments also show that using negative duplication bonus seems to give
the best results in terms of biological quality of the output clusters of size three.
Finally, the comparison to InParanoid indicates that our methods are much less
conservative, identifying many more orthologs, but also including some of lower
biological quality.

2. Notations and Definitions

As described in the previous section, the OAD and OCD problems start
by representing genes as vertices of a graph and gene similarities as edges of
this graph. More precisely, in OAD the graph at hand is a bipartite graph
G = (W,B,E). The vertices from the first part of the vertex set W correspond
to the genes from one species, the vertices from the second part B correspond
to the genes from the other species, and the task is to pair orthologs from
different parts. In the classic graph-theoretical matching definition, each vertex
is assigned at most one other vertex as a matching is a set of edges with disjoint
endpoints. In order to model genome duplications, this is formally extended as
follows.

Definition 1. Let G = (W,B,E) be a bipartite graph with partite vertex sets W
and B. An orthology assignment with duplications in G is a set A of edges such
that

• each vertex of W is an endpoint of at most two edges of A, and

• each vertex of B is an endpoint of at most one edge of A.
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For simplicity, we call the vertices in W (resp. B) white (resp. black) ver-
tices, and we use the term “white gene” (resp. “black gene”) to denote a gene
represented by a vertex from W (resp. B). Similarly, the terms “white genome”
and “black genome” will be used by abuse of notation. Since there can be other
causes for gene duplications, for example tandem duplications, it is plausible,
also in the presence of a whole genome duplication, that a white gene has more
than two orthologs in the black genome and that black genes have more than one
ortholog in the white genome. Allowing such larger clusters of orthologs has,
however, the drawback that the orthology relations are not fully resolved [21].
Here, we wish to fully resolve orthology relations, whenever possible, with the
only exception being paralogs caused by the genome duplication. Hence, the
restriction of Definition 1.

In order to model that it is more likely that a gene of the white genome is
matched to two black genes than to one, one may use a duplication bonus d.
Moreover, one may assign weights to the edges to model that some gene pairs
are more likely to be orthologs than others. With this in mind, we can formally
define the Orthology Assignment with Duplications problem as follows.

Orthology Assignment with Duplications (OAD)

Instance: An undirected bipartite graph G = (W,B,E), an edge-weight
function s : E → Q+, a duplication bonus d ∈ Q.

Task: Find an orthology assignment with duplications, A, maximizing

val(A) :=
∑
a∈A

s(a)+d·|{w ∈W | w is an endpoint of two edges of A}|.

An example input instance with optimal solutions for different values of d is
shown in Figure 1. We call val(A) the value of A. Observe that d can also be
negative: in that case, matching a white gene to two black genes is penalized
instead of encouraged, which might be useful, for example to avoid that the
number of matched white genes is too low. Moreover, in the above model, any
information about the similarity of genes in B is ignored.

A natural extension of this model is thus to incorporate knowledge about
genes from the duplicated genome. More precisely, we can assume that the
graph G contains, for each pair of black vertices, an edge if the corresponding
genes are likely to be in-paralogs. Using a maximum-parsimony approach, the
aim is then to identify clusters of orthologs that minimize the total weight of the
edges between clusters as these contradict the orthology groups. Equivalently,
we aim at finding clusters that maximize the weight of edges within the sought
clusters. For the formal problem definition, first observe that, in this second
model, the input graph is not bipartite anymore. Second, we need to define the
set of allowed groups of orthologs. For this, from now on, let the term cluster
denote a (connected) subgraph of G that contains at least one edge. Since the
overall aim is still to find orthology relations between the white and black ver-
tices, the clusters we allow in our model must contain only one white vertex,
and must be connected to at least one and at most two black vertices. Among
such possible clusters, we allow only three types, that we will call ortholog clus-
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Figure 1: An example instance of OAD. The first row shows a connected component of the
graph for Ricinus communis and Populus trichocarpa; white vertices represent ricinus genes,
black vertices represent poplar genes, and (for simplicity) edges have unit weight. The second
row shows an optimal solution to standard matching. The third row shows an optimal solution
with duplication bonus d = 0. The fourth row shows an optimal solution with duplication
bonus d > 0. The vertex names are the identifiers from the corresponding data sets in the
CoGe database (https://genomevolution.org/coge).

ters: (i) one white and one black vertex connected by an edge, (ii) a path of
length two where the middle vertex is white, and (iii) triangles with exactly one
white vertex. Observe that in particular, we exclude the possibility of having an
ortholog group in which the white vertex is considered dissimilar to one of the
two black vertices. In a similar way as Orthology Assignment with Du-
plications, we can now formally define the Orthology Clustering with
Duplications problem.

Orthology Clustering with Duplications (OCD)

Instance: An undirected graph G = (W ] B,E), an edge-weight func-
tion s : E → Q+.

Task: Find a partition (C1, . . . , C`, I) of W ] B into ortholog clus-
ters C1, . . . , C` and isolated vertices I such that val(C1, . . . , C`, I) :=∑`

i=1

∑
a⊆Ci

s(a) is maximized.

Note that the duplication bonus d used in the definition of Orthology As-
signment with Duplications is not necessary in this model, as it can be
incorporated in the input graph, by adding d to every edge weight for all edges
of G connecting pairs of black vertices having at least one common neighbor—
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if such an edge does not exist in G, then we may create it and assign it the
weight d.

We consider in this paper only simple undirected graphs G = (V,E) where
the vertex set V has two disjoint subsets, a set W of white vertices and a set B
of black vertices. We use n := |W | + |B| to denote the number of vertices
and m := |E| to denote the number of edges in the input graph. For a vertex v
in G, NG(v) denotes the set of neighbors of v in G.

Our analysis of OCD is in the context of parameterized complexity, where
we analyze the running time of algorithms for NP-hard problems not only with
respect to the input size, but also secondary parameters. Herein we try to
encapsulate the combinatorial explosion in a function of the parameter. See a
recent textbook [22] for more context and methodology.

3. Polynomial-Time Algorithms for Finding Orthologs in Two Genomes

In this section, we provide polynomial-time algorithms for Orthology As-
signment with Duplications. First, we consider the (simpler) case in which
there there is no duplication bonus, or there is a duplication penalty.

Theorem 1. Orthology Assignment with Duplications can be solved
in O(

√
n ·m) time if d ≤ 0.

Proof. Construct a graph G′ from the input graph G as follows. First add
all black vertices of G to G′. Then replace each white vertex w by two white
copies w1, w2 such that NG(w) = NG′(w1) = NG′(w2). The edge weights
between w1 and NG(w) are the same as the edge weights between w and NG(w),
that is, for each b ∈ NG(w), s({w1, b}) := s({w, b}). For w2, we add d to these
edge weights, that is, s({w2, b}) := s({w, b}) + d (recall that d ≤ 0).

We will compute an optimal orthology assignment by computing a maximum-
weight matching in G′. To this end, we now show that

G has an orthology assignment with duplications of value at least `
if and only if G′ has a matching of weight at least `.

First, let A be an orthology assignment with duplications in G of value at
least `. Construct an edge set M of G′ by adding for each vertex w ∈ W the
following edges. If w is incident with two edges {w, b1} and {w, b2} of A, then
add {w1, b1} and {w2, b2} to M . If w is incident with exactly one edge {w, b}
of A then add {w1, b1} to M . The edge set M is independent and the sum of
the edge weights is exactly the sum of the weights of A plus d times the number
of white vertices that are incident with two edges of A. Hence, the weight of
the matching is the same as the value of A, as claimed.

Conversely, let M be a matching of weight at least ` in G′. Without loss of
generality, let M be a maximum-weight matching. Consider the set A of edges
of G that contains for each vertex w ∈W and each vertex b ∈ B, the edge {w, b}
if and only if either {w1, b} ∈ M or {w2, b} ∈ M . Then, each black vertex is
incident with at most one edge in A and each white vertex is incident with at
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most two edges in A. Hence, A is an orthology assignment with duplications.
Moreover, since M has maximum weight, M contains an edge incident with w2

only if it contains an edge incident with w1. Thus, for each white vertex w ∈W ,
there is exactly one edge incident with w in A if and only if M contains an edge
that is incident with w1 and M does not contain an edge incident with w2.
Then, the contribution of each w to A is exactly the same as the contribution
of the edges that are incident with w1 and w2 to M : If M has only an edge
incident with w1, then the weights of the two edges in M and A are the same
and w does not contribute to the second part of the value sum. Otherwise, the
contribution of w to A is s(w, b1) + s(w, b2) + d = s(w1, b1) + s(w2, b2).

The proof of the second direction of the equivalence describes a linear-time
algorithm for constructing an assignment from a matching in G′. Hence, we can
find an optimal assignment by first computing the graph G′, then computing
a maximum-weight matching in G′ and then computing an assignment from
this matching. The overall running time is dominated by the time needed to
compute the matching. Since G′ has O(n) vertices and O(m) edges, this step
can be performed in O(

√
n ·m) time [23].

We now turn to the case where d > 0.

Theorem 2. Orthology Assignment with Duplications can be solved
in O(

√
n ·m) time if d > 0.

Proof. Construct a graph G′ from the input graph G as follows. First, add all
black vertices of G toG′. Then, replace each white vertex w by two copies w1, w2

such that, initially NG(w) = NG′(w1) = NG′(w2). The weights of these edges
are obtained from the old ones by adding a value of d each time, that is,
s({w1, b}) := s({w, b}) + d and s({w2, b}) := s({w, b}) + d. Further, for each
pair w1, w2 of new white vertices that correspond to the same white vertex in W ,
add the edge {w1, w2} to G′ and assign a weight of d to it.

We will compute an optimal orthology assignment by computing a maximum-
weight matching in G′. To this end, we now show that

G has an orthology assignment with duplications of value at least `
if and only if G′ has a matching of weight at least `+ d · |W |.

First, let A be an orthology assignment for G of value at least `. Construct
a matching M as follows. Consider each w ∈ W . If w is incident with two
edges {w, b1} and {w, b2} in A, then add the edges {w1, b1} and {w2, b2} to M .
If w is incident with exactly one edge {w, b} of A, then add the edge {w1, b}
to M . If w is not incident with any edge of A, then add the edge {w1, w2} to M .
In order to compare the value of A with the weight of M , we now consider each
white vertex of G separately.

Case 1: w is not incident with any edge of A. Then, the contribution of w
to val(A) is zero. By construction, M contains the edge {w1, w2}. Thus, the
edges incident with w1 and w2 contribute exactly d to the weight of M .
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Case 2: w is incident with exactly one edge {w, b} of A. Then, the contribu-
tion of w to val(A) is s({w, b}). Due to construction of M , only w1 is incident
with an edge of M . The weight of this edge is s({w, b}) + d.

Case 3: w is incident with two edges {w, b1} and {w, b2} of A. Then, the
contribution of w to val(A) is s({w, b1}) + s({w, b2}) + d. Due to construction
of M , w1 and w2 are incident with edges of M , one having b1 as endpoint
and one having b2 as endpoint. The weights of these edges are s({w, b1}) + d
and s({w, b2}) + d, respectively.

In each case, the contribution of w to val(A) is d less than the contribution
of w1 and w2 to the weight ofM . Thus, the weight ofM is at least val(A)+d·|W |,
as claimed.

Conversely, let M be a matching of weight at least `+d · |W | in G′. Without
loss of generality, assume that M is a maximum-weight matching. Consider the
set A of edges of G that contains for each vertex w ∈ W and each vertex b ∈
B, the edge {w, b} if and only if either {w1, b} ∈ M or {w2, b} ∈ M . We
compare again the weight of M with the value of A. We do this by grouping the
contributions of the white vertices in G′ in the pairs w1, w2. First, observe that,
since M is a maximum-weight matching, at least one of w1 or w2 is incident
with an edge in M ; otherwise, adding {w1, w2} to M gives a matching with
higher weight. Moreover, we can assume without loss of generality, that it is w1

that is always incident with an edge of M . Thus, it is sufficient to consider the
following three cases.

Case 1: only w1 is incident with an edge {w1, b} of M . Then, the contri-
bution of w1 to the weight of M is s({w, b}) + d. By construction, A contains
the edge {w, b} and no other edge incident with w. Thus, the contribution of w
to val(A) is s({w, b}) and therefore d less than the contribution of w1 and w2

to M .
Case 2: M contains {w1, w2}. Then, the contribution of w1 and w2 toM is d.

By construction, w is not incident with any edge of A. Thus, the contribution
of w to val(A) is zero and therefore d less than the contribution of w1 and w2

to M .
Case 3: M contains {w1, b1} and {w2, b2}. Then, the contribution of w1

and w2 to M is s({w, b1})+d+s({w, b2})+d. By construction, w is incident with
two edges of A: the edge {w, b1} and the edge {w, b2}. Thus, the contribution
of w to val(A) is s({w, b1}) + s({w, b2}) + d and therefore it is d less than the
contribution of w1 and w2 to M .

In each case, the contribution of w to the value of A is exactly d less than
the contribution of w1 and w2 to the weight of M . Thus, the value of A is at
least `+ d · |W | − d · |W | = `, as claimed.

Thus, a maximum-weight matching in G′ directly corresponds to an optimal
assignment in G. Moreover, the second part of the proof gives a linear-time al-
gorithm for computing such an assignment from the maximum-weight matching.
Hence, we can find an optimal assignment by first computing the graph G′, then
computing a maximum-weight matching in G′ and then computing an assign-
ment from this matching. The overall running time is dominated by the time
needed to compute the matching. Since G′ has O(n) vertices and O(m) edges,
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this step can be performed in O(
√
n ·m) time [23].

Finally, let us remark that the problem of computing a maximum-weight
matching in a bipartite graph can be easily reduced to Orthology Assign-
ment with Duplications with d = 0: Pick an arbitrary part of the vertex
bipartition to be the white part of the Orthology Assignment with Du-
plications instance and add for each vertex v of this part a further vertex
that has only v as neighbor and assign a sufficiently large weight to this edge.
Then, any assignment will include these new edges and further edges of the
assignment directly correspond to a maximum-weight matching of the original
bipartite graph. A similar construction works if d > 0. Hence, any faster algo-
rithm for Orthology Assignment with Duplications would directly imply
a faster algorithm for computing maximum-weight matchings.

4. Including Similarities in the Duplicated Genome Makes it Hard

We now consider the more general problem where the score of an orthology
group may also take information between genes of the duplicated genome into
account. Unfortunately, this extension of the model results in a computationally
hard problem. The reduction we use to prove NP-hardness is similar to a known
NP-hardness reduction for the Cluster Editing problem [24].

Theorem 3. Orthology Clustering with Duplications is NP-hard, even
when the input graph has maximum degree six and weights are all unitary.

Proof. The reduction is from the 3-SAT problem where we have a Boolean
formula φ in conjunctive normal form and clauses of size exactly three and we
ask whether φ is satisfiable. Let N be the number of variables in φ and M the
number of its clauses. Denote the maximum number of occurrences of a variable
in any clause by `. (Without loss of generality, we assume that each variable
occurs only once in each clause.) We show how to construct in polynomial time
a white/black-colored graph G which admits a set of vertex-disjoint ortholog
clusters containing at least 3`N edges if and only if φ is satisfiable. This directly
implies the NP-hardness of Orthology Clustering with Duplications.

Let us construct G, which is the empty graph initially. First, add N cycles,
each with 2` black vertices, corresponding to the variables in φ. For each cycle,
label the edges in an arbitrary maximum matching by positive and the remaining
edges by negative. This labeling is used only in the construction and will not be
part of the final instance. Next, for each clause, add a white vertex v and attach
it to the cycles of the variables it contains as follows. For each positive literal x,
make v adjacent to the two endpoints of a positive edge of the cycle of x. For
each negative literal ¬x, make v adjacent to the endpoints of a negative edge of
the cycle of x. For each of these connections, choose an edge whose endpoints
are not yet connected to any clause vertex. Note that this is always possible
since each cycle has length 2`. Finally, introduce `N−M white dummy vertices
that are connected to each vertex in each cycle. (Note that M ≤ `N/3, so
this is possible.) We assign each edge weight one, meaning that the value of a

10



clustering is simply the number of edges contained in its clusters. This concludes
the construction of G. As indicated above, we ask for an ortholog clustering of
at least 3`N edges.

Now assume that φ is satisfiable and fix an arbitrary satisfying assignment of
the variables. Hence, for each clause there is a literal satisfying this clause. To
construct a clustering for G, for each clause C, we pick as a ortholog cluster a
triangle in G which consists of the white vertex corresponding to the clause and
the endpoints of an edge in a variable cycle. The variable is chosen such that
its literal in C is satisfied, that is, if the literal is positive, then the edge in the
triangle is positive and vice versa. Note that we can indeed pick these clusters,
because, first, by the way we connected the clause vertices and variable cycles, no
positive (resp. negative) edge blocks another positive (resp. negative) edge from
being taken into a cluster, and, second, because choosing the clusters in this way,
we consistently choose only positive or only negative edges from each variable
cycle. Hence, we obtain M clusters with three edges each. Finally, for each
variable cycle, we complete the set of cluster edges in it to a perfect matching,
by making all remaining matching edges into a cluster with an arbitrary dummy
vertex. In total, we obtain M+`N−M = `N ortholog clusters, each with three
edges. That is, the Orthology Clustering with Duplications instance
has a solution.

Now assume that G has a set of ortholog clusters with at least 3`N edges
overall. Observe that G contains exactly `N white vertices and thus, at least
`N edges inside the ortholog clusters are between black vertices. Since in each
of the N variable cycles there are at most ` edges in clusters, and these are
the only “black” edges, the clusters induce perfect matchings in each variable
cycle. Thus, for each cycle, the edges correspond to a valid assignment of truth
values to the variables: Assign each variable x in φ the value true if the cluster
edges from the corresponding cycle are positive and assign it false, otherwise.
Since there are only `N −M white dummy vertices, all M clause vertices are in
ortholog clusters. By the way in which we connected the clause vertices to the
variable cycles, this means that each clause is satisfied by φ.

The NP-hardness of OCD motivates fixed-parameter algorithms for this
problem. Observe that OCD can be viewed as an edge deletion problem: delete
a minimum-weight set of edges such that only the edges of the ortholog clus-
ters Ci remain. The standard parameter for such problems is the number of edge
deletions k to obtain a solution [25, 26]. It is easy to obtain fixed-parameter
tractability for OCD and parameter k as the following shows.

Proposition 1. Let (G = (V,E), s) be an instance of OCD such that no
connected component is an ortholog cluster, let (C1, . . . , C`, I) be an ortholog
clustering of G, and let k denote the number of edges not contained in any
ortholog cluster Ci. Then, |E| ≤ 7k.

Proof. In an instance as described above, every ortholog cluster is incident with
at least one edge deletion. Thus, the number of ortholog clusters is at most 2k.
Since an ortholog cluster has at most three edges, this implies that such a graph
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has at most 7k edges: at most 6k edges in the ortholog clusters and at most k
deleted edges.

The above proposition shows that k is not a small parameter. In order
to obtain more efficient fixed-parameter algorithms, we consider two smaller
parameters. The first parameter is as follows.

Definition 2 (Parameter kB). Given an instance of OCD, by kB we denote
the number of edge deletions necessary to destroy all paths on three vertices that
start and end with a white vertex.

Clearly, such paths cannot be contained completely in any ortholog cluster Ci.
Hence, kB ≤ k. The second parameter is defined below.

Definition 3 (Parameter kW ). Given an instance of OCD, by kW we denote
the number of edge deletions necessary to destroy all subgraphs containing a
white vertex with degree three.

In an ortholog cluster, every white vertex has degree at most two. Hence, kW ≤
k. A further advantage of kB and kW is that they can be easily computed as in
fact kB =

∑
b∈B max{|N(b) ∩W | − 1, 0} and kW =

∑
w∈W max{|N(w)| − 2, 0}

(recall that white vertices have only black neighbors). Hence, one may easily
decide whether kB or kW are small, and thus whether they are appropriate
parameters.

In the following, we say that a reduction rule is correct if the objective value
of an optimal solution is the same before and after the rule is applied. Similarly,
a branching rule is correct if the optimal solution of one of the recursive branches
gives an optimal solution of the instance to which the rule is applied.

A fixed-parameter algorithm for kB. We first describe a search tree algorithm
for parameter kB . The strategy of the algorithm is to first destroy all paths
between white vertices.

Branching Rule 4. If B contains a vertex b with at least two neighbors w1, w2 ∈
W , branch into the two cases to delete either {b, w1} or {b, w2}.

The branching rule is correct since any ortholog cluster can contain at most
one of {b, w1} and {b, w2}. In the recursive branches, parameter kB is decreased
by at least one. Moreover, if kB = 0, the rule does not apply. Since this is the
only branching rule that we apply, this implies that the resulting search tree
has size O(2kB ).

We now show that all instances for which the rule does not apply can be
solved in linear time by applying two reduction rules.

Reduction Rule 5. If G contains an edge {b1, b2} such that b1, b2 ∈ B do not
have a common neighbor in W , then delete {b1, b2}.

Reduction Rule 6. If G contains a connected component G′ that is not an
ortholog cluster and has exactly one white vertex w, then compute an ortholog
cluster C such that C contains w and

∑
a⊆C s(a) is maximum. Delete all edges

of G′ that are not contained in C.
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Lemma 1. Reduction Rules 5 and 6 are correct and can be executed exhaustively
in O(m+ n) time.

Proof. Reduction Rule 5 is correct since no such edge {b1, b2} can be part of an
ortholog cluster. It can be applied exhaustively in O(m + n) time since every
vertex in B has at most one neighbor in W (because Branching Rule 4 does not
apply by hypothesis).

The correctness of Reduction Rule 6 is implied by two facts. First, any
ortholog cluster containing a vertex from G′ contains w. Second, in any optimal
solution, any vertex of G′ is either contained in an ortholog cluster with w or
belongs to the set I of isolated vertices.

The running time can be seen as follows. Say that a connected component C
of G is amenable if it fulfills the condition of Reduction Rule 6, that is, C is not
an ortholog cluster and contains exactly one white vertex. First, in O(m + n)
time, we compute the amenable connected components of G. Then, for each
such connected component do the following. If w has only one neighbor b in G′,
then {w, b} is the optimal cluster C and we are done. Otherwise, we first find the
two edges incident with w that have the largest two edge weights. The sum of
these two edge weights gives the best ortholog cluster among those that do not
contain an edge between the two black vertices. Thus, initialize C with the three
corresponding vertices. Then, for each edge e incident with two black vertices b1
and b2, we check whether the endpoints of the edge are both adjacent to w. If
this is the case, then compute in O(1) time the sum s(b1, b2)+s(b1, w)+s(b2, w).
If this sum exceeds the sum of the edges in the current best ortholog cluster C,
then update C accordingly.

Clearly, this procedure computes the optimal ortholog cluster C for each
amenable connected component. All edges not contained in any such cluster C
but in amenable connected components can be deleted in linear time. Now
the overall running time follows from the fact that deleting edges in amenable
connected components does not create new amenable connected components.

Theorem 7. Orthology Clustering with Duplications can be solved
in O(2kB · (m+ n)) time.

Proof. The algorithm first applies Branching Rule 4 as long as possible. After-
wards, in each leaf of the corresponding search tree, it applies Reduction Rules 5
and 6 exhaustively. In the remaining instance all connected components are or-
tholog clusters and we can compute the value of the corresponding clustering by
computing the sum of the edge weights in the graph associated with the leaf of
the search tree. By keeping the best clustering found in any leaf, the algorithm
computes an optimal solution.

As argued above, the search tree produced by the algorithm has size O(2kB ).
Hence, the running time bound can be obtained by showing that in each search
tree node, we spend O(m + n) time. Clearly, we can check in O(m + n) time
whether Branching Rule 4 applies. By Lemma 1, Reduction Rules 5 and 6
can be applied exhaustively in O(m + n) time. Finally, if these rules do not
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apply, then the value of the ortholog clustering is computed by summing all
edge weights in O(m+ n) time.

A fixed-parameter algorithm for kW . The approach is again to first destroy
all subgraphs containing a white vertex of degree at least three via branching.
Instances that do not contain such a vertex are solved by computing a maximum-
weight matching in an auxiliary graph.

Branching Rule 8. If B contains a vertex w ∈ W with at least three neigh-
bors b1, b2, b3 ∈ B, branch into the three cases to delete either {w, b1}, {w, b2},
or {w, b3}.

The correctness follows from the fact that in every ortholog cluster, the white
vertex has degree at most two.

Lemma 2. Let (G, s) be an instance of Orthology Clustering with Du-
plications such that every vertex in W has degree at most two. Then, (G, s)
can be solved in O(

√
n ·m) time.

Proof. First, apply Reduction Rule 5 exhaustively to G; this can be done
in O(m + n) time. Afterwards, construct an auxiliary graph G′ with edge
weight function s′ derived from G and s as follows. The graph G′ is obtained
from G by adding an edge between all black vertices that have a common white
neighbor. Observe that by the condition of the lemma, each white vertex has at
most two neighbors. Thus, the number of added edges is O(n). Then, for every
edge {b1, b2} between two black vertices in G′ that share at least one common
white neighbor, carry out the following operation. Let w ∈ W be a common
neighbor such that s(b1, w) + s(b2, w) is maximum. Then, set s′(b1, b2) :=
s(b1, b2) + s(b1, w) + s(b2, w) if {b1, b2} is contained in G and s′(b1, b2) :=
s(b1, w) + s(b2, w), otherwise. Intuitively, this means that the new weight
of {b1, b2} records not only the similarity between b1 and b2 but instead the
weight of the best ortholog cluster that contains b1 and b2. For all other edges
set s′(a) := s(a). We now show that the best ortholog clustering in (G, s) cor-
responds to a maximum-weight matching in (G′, s′). More precisely, we show
that (G, s) has an ortholog clustering of value ` if and only if (G′, s′) has a
matching of weight `.

First, let (C1, . . . , C`) be an ortholog clustering of value `. Construct a
matching M in (G′, s′) as follows: For each cluster Ci consisting of exactly two
vertices b and w add the edge {b, w} to M . For each cluster Ci containing three
vertices b1, b2, and w where b1, b2 ∈ B add the edge {b1, b2} to M . By definition,
the sum of the edge weights of M in G′ is at least `. Moreover, M is a matching
since the Cis have disjoint vertex sets.

For the converse direction, we mainly have to prove that clusters corre-
sponding to matching edges are pairwise vertex disjoint. If a matching edge e ∈
M is between two black vertices b1, and b2, then let w be the vertex such
that s(b1, w) + s(b2, w) is maximum. Construct an ortholog cluster C contain-
ing b1, b2, and w and the edges between them. The weight of the edges of C in G
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is, by definition of s′, exactly s′(b1, b2). If a matching edge e ∈ M is between
a black and a white vertex, then construct an ortholog cluster containing the
endpoints of e and u. Again by definition of s′, the weight of the edge e in G′

and the value of the ortholog cluster in G are the same. It remains to show that
no two ortholog clusters have a vertex in common. The only possibility for a
vertex to be in two ortholog clusters occurs when a white vertex w is added to
a matching edge {b1, b2} to produce a cluster. By the condition of the lemma,
vertex w has no further neighbors in G′ and thus the pair {b1, b2} is the only
pair that may cause an addition of w to a cluster. Thus, the produced set of
vertex sets is an ortholog clustering of weight `.

Observe that the converse direction of the proof also describes a linear-time
algorithm to construct an optimal ortholog clustering from a maximum-weight
matching in G′. The overall running time bound follows from the fact that G′

can be constructed in O(n+m) time and has n vertices and O(m) edges.

We immediately obtain the following running time bound on the search
tree algorithm by observing that Branching Rule 8 produces a search tree of
size O(3kW ).

Theorem 9. Orthology Clustering with Duplications can be solved
in O(3kW ·

√
n ·m) time.

5. Experiments

In the following, we report on our empirical findings for the Orthology As-
signment with Duplications (OAD) and Orthology Clustering with
Duplications (OCD) models and the algorithms developed for them in Sec-
tions 3 and 4.

Data Acquisition. We built instances based on the genomes of Ricinus commu-
nis [27] (castor bean), Populus trichocarpa [28] (western balsam poplar), and
Theobroma cacao [29] (cacao tree). Of these three species, Populus trichocarpa
has undergone a whole genome duplication after the speciation events. Accord-
ingly, we built one set of instances with Ricinus communis as white species and
one set of instances with Theobroma cacao as white species; Populus trichocarpa
is the black species in both sets. In the following, we refer to the three species
as Ricinus, Cacao, and Populus.

To build the graphs, following the methodology introduced previously [5,
9], we computed BLAST Expect (E) values [30] which measure the expected
number of hits with the same alignment score that would be encountered in a
random string of the same size. We add an edge between two genes if the E-value
is below some threshold. We use three threshold values t ∈ {0.0, 10−140, 10−80}.
Each edge in the built graphs has weight one. To keep the size of the OCD
instances reasonable, we use an explicit duplication bonus d instead of creating
edges between all pairs of black vertices as described in Section 1 (which is
equivalent in the unweighted case).
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Table 1: Some general properties of the instances for OAD and OCD. Here, nB is the number
of black vertices, nW the number of white vertices, and mOAD and mOCD the number of
edges in the OAD and OCD instances, respectively. By n∗ we denote the order of the largest
component and with n | 95 the 95th percentile of the component orders, and analogously we
denote the maximum and 95th percentile values of kB and kW .

Ricinus vs. Populus Cacao vs. Populus

t 10−80 10−140 0.0 10−80 10−140 0.0

nB 24472 18079 14235 25165 18140 14287
nW 15111 11333 9075 16963 12488 9907
n∗ 1914 316 201 2261 440 256
n | 95 12 10 9 13 11 9
mOAD 132446 56438 34445 227778 77887 44251
mOCD 269862 109352 64162 368430 131568 73837
# comp. 7980 7102 6247 7847 7043 6152
# nontr. comp 2493 1897 1504 2698 2008 1613
# diff. comp 2141 1620 1272 2373 1806 1456
k∗B 30351 2848 1268 65613 5957 3723
k∗W 30608 2895 1327 65300 5946 3723
kB | 95 20 13 8 25 15 11
kW | 95 20 12 8 24 13 9

Implementation Details. The algorithms were implemented in Python 2.7.6 us-
ing NetworkX 1.11.5 For OAD, we used a straightforward implementation of
the algorithms described in Section 3. For OCD we implemented the fixed-
parameter algorithm for parameter kB since numerical evaluation showed that
the search tree size for this parameter was usually smaller than for kW . To im-
prove the running time, apart from Reduction Rules 5 and 6, we implemented
further reduction rules related to situations in which vertices’ neighbors are sub-
sets of other vertices’ neighbors and where the optimal matches of a white vertex
can be determined locally. If kW = 0 during the execution of the algorithm,
then we use the algorithm from Lemma 2 to solve the remaining instance.

Instance Properties. Some general instance properties and statistics about the
results for OAD are shown in Table 1. As the table shows, the graphs decom-
pose into a large number of smaller connected components, most of which are
trivial, that is, they consist of one white vertex and one or two black vertices.
The largest connected components contain between 201 and 1914 vertices. The
majority of the nontrivial components have at most 10 vertices. Similarly, for
the majority of nontrivial components, the two parameters kB and kW have
moderate values. Note also that the size of the instances, in terms of the num-
ber of edges, increases roughly twofold between each increment of the threshold
value. Each edge between two black genes represents a possible paralog. These
possible paralogs are taken into account in the OCD instances and not in the
OAD instances. They make up roughly half of the edges in the OCD instances.

Solution Statistics for OAD and OCD. We computed the solutions for OAD
and OCD for the instances described above. For OCD, not all connected com-

5Source code and results are available at http://fpt.akt.tu-berlin.de/oad.
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Table 2: Number and type of the clusters output for OAD and OCD. Here, d is the dupli-
cation bonus, C is the total number of clusters, B is the number of covered black genes, and
%{P2, P3,K3} is the number of the clusters of the corresponding type.

OAD OCD

d C B %P2 %P3 %K3 C B %P2 %P3 %K3

Ricinus vs. Populus, t = 10−80

-1.1 14811 14811 100.00 0.00 0.00 10274 15212 51.94 0.00 48.06
-0.5 14811 22724 46.57 6.41 47.01 9571 15338 39.75 1.44 58.81
0.0 13826 22724 35.64 7.83 56.53 9547 15337 39.35 1.70 58.95
1.0 13293 22724 29.05 9.10 61.85 9539 15337 39.22 1.82 58.96

Ricinus vs. Populus, t = 10−140

-1.1 11085 11085 100.00 0.00 0.00 8879 12994 53.65 0.00 46.35
-0.5 11085 16756 48.84 4.97 46.19 8356 13082 43.44 1.26 55.30
0.0 10547 16756 41.13 5.87 53.00 8332 13082 42.99 1.55 55.46
1.0 10216 16756 35.98 6.60 57.42 8319 13080 42.77 1.71 55.52

Ricinus vs. Populus, t = 0.0

-1.1 8873 8873 100.00 0.00 0.00 7784 11319 54.59 0.00 45.41
-0.5 8873 13228 50.92 3.87 45.22 7362 11379 45.44 0.91 53.65
0.0 8498 13228 44.34 4.28 51.38 7337 11378 44.92 1.28 53.80
1.0 8258 13228 39.82 5.16 55.03 7323 11379 44.61 1.52 53.87

Cacao vs. Populus, t = 10−80

-1.1 16154 16154 100.00 0.00 0.00 10373 15195 53.51 0.00 46.49
-0.5 16154 24048 51.13 7.69 41.17 9581 15349 39.80 2.10 58.10
0.0 14624 24048 35.56 10.84 53.60 9514 15345 38.71 2.86 58.43
1.0 13913 24048 27.15 12.86 59.99 9498 15344 38.45 3.11 58.44

Cacao vs. Populus, t = 10−140

-1.1 11887 11887 100.00 0.00 0.00 9040 12996 56.24 0.00 43.76
-0.5 11887 17371 53.87 4.59 41.54 8371 13075 43.81 1.22 54.98
0.0 10960 17371 41.51 6.51 51.98 8341 13073 43.27 1.61 55.13
1.0 10514 17371 34.78 8.07 57.14 8325 13071 42.99 1.84 55.17

Cacao vs. Populus, t = 0.0

-1.1 9469 9469 100.00 0.00 0.00 7883 11301 56.64 0.00 43.36
-0.5 9469 13708 55.23 3.89 40.88 7334 11357 45.15 1.04 53.82
0.0 8802 13708 44.26 4.79 50.94 7303 11352 44.56 1.47 53.98
1.0 8502 13708 38.77 5.80 55.43 7293 11352 44.34 1.70 53.96

ponents could be solved within reasonable time as our algorithms have expo-
nential running times in the worst case. Hence, we set a timeout of 60 seconds
for each connected component. With this setting, the connected components
solved by OCD contained altogether between a minimum of 63% of the ver-
tices (attained for Cacao and t = 10−80) and a maximum of 87% (for Ricinus
and t = 0.0), and the total running time for an instance of OCD ranged be-
tween 2.1 and 6.7 hours. In contrast, all OAD instances could be solved in
reasonable time, with the largest instance taking 2 minutes.

Table 2 shows solution statistics for OAD and OCD for different values
of the duplication bonus d and the distribution of the ortholog clusters into
P2-clusters (single edges), P3-clusters (a white vertex with two black neighbors
that are not adjacent in the OCD instance), and K3-clusters (a white vertex
and two black vertices, pairwise adjacent in the OCD instance). Observe that,
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Table 3: Number and type of the clusters output for OAD and OCD restricted to components
that were solved by both methods. Here, d is the duplication bonus, C is the total number
of clusters, B is the number of covered black genes, and %{P2, P3,K3} is the number of the
clusters of the corresponding type.

OAD OCD

d C B %P2 %P3 %K3 C B %P2 %P3 %K3

Ricinus vs. Populus, t = 10−80

-1.1 10274 10274 100.00 0.00 0.00 10274 15212 51.94 0.00 48.06
-0.5 10274 15345 50.64 3.66 45.70 9571 15338 39.75 1.44 58.81
0.0 9819 15345 43.72 4.25 52.03 9547 15337 39.35 1.70 58.95
1.0 9527 15345 38.93 4.66 56.41 9539 15337 39.22 1.82 58.96

Ricinus vs. Populus, t = 10−140

-1.1 8879 8879 100.00 0.00 0.00 8879 12994 53.65 0.00 46.35
-0.5 8879 13082 52.66 2.95 44.39 8356 13082 43.44 1.26 55.30
0.0 8534 13082 46.71 3.48 49.81 8332 13082 42.99 1.55 55.46
1.0 8304 13082 42.46 3.96 53.58 8319 13080 42.77 1.71 55.52

Ricinus vs. Populus, t = 0.0

-1.1 7784 7784 100.00 0.00 0.00 7784 11319 54.59 0.00 45.41
-0.5 7784 11382 53.78 2.62 43.60 7362 11379 45.44 0.91 53.65
0.0 7505 11382 48.34 2.97 48.69 7337 11378 44.92 1.28 53.80
1.0 7312 11382 44.34 3.62 52.04 7323 11379 44.61 1.52 53.87

Cacao vs. Populus, t = 10−80

-1.1 10373 10373 100.00 0.00 0.00 10373 15195 53.51 0.00 46.49
-0.5 10373 15352 52.00 4.85 43.15 9581 15349 39.80 2.10 58.10
0.0 9821 15352 43.68 5.85 50.46 9514 15345 38.71 2.86 58.43
1.0 9485 15352 38.14 6.49 55.36 9498 15344 38.45 3.11 58.44

Cacao vs. Populus, t = 10−140

1.1 9040 9040 100.00 0.00 0.00 9040 12996 56.24 0.00 43.76
-0.5 9040 13080 55.31 2.75 41.94 8371 13075 43.81 1.22 54.98
0.0 8580 13080 47.55 3.52 48.93 8341 13073 43.27 1.61 55.13
1.0 8318 13080 42.75 4.24 53.01 8325 13071 42.99 1.84 55.17

Cacao vs. Populus, t = 0.0

-1.1 7883 7883 100.00 0.00 0.00 7883 11301 56.64 0.00 43.36
-0.5 7883 11360 55.89 2.87 41.24 7334 11357 45.15 1.04 53.82
0.0 7486 11360 48.25 3.09 48.66 7303 11352 44.56 1.47 53.98
1.0 7291 11360 44.19 3.69 52.12 7293 11352 44.34 1.70 53.96

while the OAD instances contain no edges between black vertices, we use these
edges to compute the cluster distribution.

Using OAD, the ratio of white genes covered by clusters ranges between
82 % and 98 % over all instances, threshold values, and duplication bonuses. The
coverage of black genes ranges between 92 % and 95 % for duplication bonuses
between −0.5 and 1.0, and around 60 % if the bonus is −1.1. Indeed, for OAD
with d = −1.1 we obtain the same solutions that we would obtain by computing
a maximum matching between the white and black genes. In contrast, for OCD
with d = −1.1 we see a sharp divide into clusters of size two and K3-clusters.
OCD failed to solve larger components; Table 3 compares OAD and OCD on
those components that were solved by both variants. Extrapolating from these
data, OCD covers a similar ratio of black and white genes as OAD, except for
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the case of black genes and duplication bonus −1.1: The coverage of black genes
for OCD with duplication bonus −1.1 does not differ substantially from the one
for other duplication bonuses.

Generally, we see that higher duplication bonus leads to a lower number
of clusters meaning less coverage for the set of white genes. Observe that,
somewhat counterintuitively, the percentage of K3-clusters is sometimes higher
for OAD although OAD ignores these edges. The reason for this is simply
that OCD failed to solve the larger components which contain more potential
paralogs: The comparison of the OCD results to the OAD results restricted to
the components that were solved by OCD in Table 3 shows that OCD always
identifies more K3-clusters. Notably, the number of P3-clusters identified by the
OCD model is at most half the one for OAD.

Similarly to the number of K3-clusters, it may seem that the number of
covered black genes is much lower for OCD, but Table 3 reveals that the coverage
is only marginally smaller when restricted to the components both algorithms
could solve.

In summary, we see that OAD and OCD cover in ortholog clusters large
ratios of both black and white genes, regardless of the threshold t. The coverage
between the two methods is similar, barring computational barriers, except for
duplication bonus −1.1, where it is significantly lower for OAD. In contrast to
OAD, OCD produces roughly half the number of P3-clusters and slightly more
K3-clusters.

Similarity of Predicted Paralogs for OAD and OCD. The solution statistics
show that both OAD and OCD identify large numbers of supposed orthologs.
We now evaluate the biological quality of these results using three tests.

Recall that the clusters of size three for OAD and OCD are in fact pre-
dictions of pairs of paralogs in the duplicated genome. In our case, this is the
Populus genome. It is expected that paralogs have high sequence similarity. In
the first test, we thus evaluate the Blast E-values of the predicted paralogs.

Moreover, we expect that the sequence similarity for the predicted paralogs
of Populus is higher than both sequence similarities between the Populus genes
and the Ricinus or Cacao genes. In other words, we expect that the gene tree of
the three sequences in the cluster agrees with the species tree of the two species.
We check whether this is indeed the case in the second test, a standard test in
comparative genomics.

As the third and final test, for each pair of predicted paralogs, we retrieved
and compared their chromosome number. Paralogs that arise due to the genome
duplication event should be located on different chromosomes. Hence, we com-
puted the percentage of paralogs that are located on different chromosomes.
We expect that a higher percentage indicates a higher percentage of correctly
assigned paralogs.

Among the matched genes, in general, smaller threshold values lead to larger
percentages for correct gene trees regardless of which of the two methods we use.
For OAD the number of output clusters with correct gene trees range between
at least 50 % and at least 90 % with increases of circa 20 % per decrement of
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Table 4: Average sequence similarity for the predicted paralogs and percentage of clusters
for which the gene tree matches the sequence tree using the OAD model. Here d denotes
the duplication bonus and e | x the BLAST E-value at the xth percentile, % cgt denotes
the percentage of size-three clusters with correct gene trees, % dc denotes the percentage
size-three clusters whose predicted paralogs are located on different chromosomes of Populus.

d e | 75 e | 50 e | 25 % cgt % dc

Ricinus vs. Populus, t = 10−80

−1.1 — — — — —
−0.5 3.35e-112 2.91e-161 0.00e+00 61.03 83.89

0.0 2.48e-111 5.32e-159 0.00e+00 60.46 83.56
1.0 4.43e-110 3.43e-157 0.00e+00 59.66 83.52

Ricinus vs. Populus, t = 10−140

−1.1 — — — — —
−0.5 4.67e-177 0.00e+00 0.00e+00 77.41 85.15

0.0 3.85e-176 0.00e+00 0.00e+00 76.63 84.81
1.0 4.75e-175 0.00e+00 0.00e+00 75.98 84.72

Ricinus vs. Populus, t = 0

−1.1 — — — — —
−0.5 0.00e+00 0.00e+00 0.00e+00 93.25 85.74

0.0 0.00e+00 0.00e+00 0.00e+00 93.28 86.03
1.0 0.00e+00 0.00e+00 0.00e+00 92.64 85.77

Cacao vs. Populus, t = 10−80

−1.1 — — — — —
−0.5 7.13e-105 9.71e-154 0.00e+00 58.42 83.80

0.0 2.96e-103 4.88e-150 0.00e+00 56.92 82.49
1.0 2.18e-101 8.21e-148 0.00e+00 55.93 82.47

Cacao vs. Populus, t = 10−140

−1.1 — — — — —
−0.5 7.25e-177 0.00e+00 0.00e+00 76.93 84.74

0.0 6.60e-174 0.00e+00 0.00e+00 75.35 83.23
1.0 1.53e-170 0.00e+00 0.00e+00 73.79 83.29

Cacao vs. Populus, t = 0

−1.1 — — — — —
−0.5 0.00e+00 0.00e+00 0.00e+00 92.57 85.77

0.0 0.00e+00 0.00e+00 0.00e+00 92.38 85.32
1.0 0.00e+00 0.00e+00 0.00e+00 91.55 84.67

the threshold value. Here, we usually observe that between 50 % and 75 %
of the presumed paralogs have alignment E-values of 0.0. For OCD these
numbers increase substantially and we usually observe that more than 75 % of
the presumed paralogs have perfect E-values, and the percentage of clusters with
correct gene trees is never below 70 %. Surprisingly, increasing the duplication
bonus decreases the alignment scores throughout, and also the percentage of
correct gene trees decreases. For sake of completeness, Tables 6 and 7 in the
appendix contain the results restricted to the components that were solved by
both methods.

The percentage of clusters in which the black genes reside on different chro-
mosomes ranges from 83% to 86% for OAD and from 88% to 90% for OCD.
However, when restricting to components solved by both algorithms, the num-
bers for OAD become similar to the ones for OCD, with only a small tendency
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Table 5: Average sequence similarity for the predicted paralogs and percentage of clusters
for which the gene tree matches the sequence tree using the OCD model. Here d denotes
the duplication bonus and e | x the BLAST E-value at the xth percentile, % cgt denotes
the percentage of size-three clusters with correct gene trees, % dc denotes the percentage
size-three clusters whose predicted paralogs are located on different chromosomes of Populus.

d e | 75 e | 50 e | 25 % cgt % dc

Ricinus vs. Populus, t = 10−80

−1.1 3.94e-134 0.00e+00 0.00e+00 75.17 90.28
−0.5 1.16e-129 0.00e+00 0.00e+00 71.87 88.56

0.0 3.07e-129 0.00e+00 0.00e+00 71.61 88.50
1.0 3.52e-129 0.00e+00 0.00e+00 71.51 88.51

Ricinus vs. Populus, t = 10−140

−1.1 0.00e+00 0.00e+00 0.00e+00 88.80 89.99
−0.5 0.00e+00 0.00e+00 0.00e+00 85.65 88.68

0.0 0.00e+00 0.00e+00 0.00e+00 85.22 88.72
1.0 0.00e+00 0.00e+00 0.00e+00 85.02 88.66

Ricinus vs. Populus, t = 0

−1.1 0.00e+00 0.00e+00 0.00e+00 100.00 89.70
−0.5 0.00e+00 0.00e+00 0.00e+00 98.53 88.35

0.0 0.00e+00 0.00e+00 0.00e+00 98.07 88.29
1.0 0.00e+00 0.00e+00 0.00e+00 97.71 88.24

Cacao vs. Populus, t = 10−80

−1.1 2.60e-134 0.00e+00 0.00e+00 75.01 90.40
−0.5 8.48e-128 5.87e-180 0.00e+00 70.96 88.56

0.0 6.78e-126 1.98e-178 0.00e+00 70.11 88.44
1.0 2.34e-125 3.90e-178 0.00e+00 69.88 88.33

Cacao vs. Populus, t = 10−140

−1.1 0.00e+00 0.00e+00 0.00e+00 88.60 89.26
−0.5 0.00e+00 0.00e+00 0.00e+00 85.71 87.80

0.0 0.00e+00 0.00e+00 0.00e+00 85.23 87.81
1.0 0.00e+00 0.00e+00 0.00e+00 84.91 87.86

Cacao vs. Populus, t = 0

−1.1 0.00e+00 0.00e+00 0.00e+00 100.00 90.14
−0.5 0.00e+00 0.00e+00 0.00e+00 98.36 88.44

0.0 0.00e+00 0.00e+00 0.00e+00 97.70 88.44
1.0 0.00e+00 0.00e+00 0.00e+00 97.31 88.40

for improvement in OCD (see Tables 6 and 7 in the appendix).
In summary, all three tests give encouraging results, showing that our meth-

ods may yield biologically significant predictions of orthologs. It is especially
noteworthy that, despite the fact that our methods do not explicitly take gene
positions into account, circa 90 % of the predicted paralogs reside on different
chromosomes and hence pass the chromosome-based paralogy test. Comparing
OAD and OCD, while for the sequence similarity-based tests the results are
always better for OCD than for OAD, the results for the chromosome test are
less clear.

It seems that using d = −0.5 for OAD and d = −1.1 for OCD are reasonable
settings: the first obtains the best coverage in terms of numbers of genes in the
clusters while having the best quality among the OAD runs. The second setting
gives the best overall quality. Since the coverage for OCD is generally much
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lower than for OAD, due to the fact that the time limit is exceeded on many
larger connected components, it is advisable to use OCD only if the cluster
quality is much more important than overall coverage.

Preliminary Comparison with InParanoid. In order to get a preliminary point
of comparison we chose InParanoid 4.1 [4, 17–20], one of the well-established
graph-based methods for identifying ortholog clusters, chosen for ease of use
and because it is a balanced approach, yielding consistently good performance
over a variety of benchmarks [31]. We used it to output ortholog clusters with
paralogs on the Ricinus and Populus instances. With the standard parameter
settings, InParanoid identifies 95 ortholog clusters. Of these clusters 19 have
size three, all of them contain two Populus genes and one Ricinus gene ; 9
clusters have size more than three. Hence, InParanoid with standard settings
does not produce a clustering with full resolution as our method does. The
quality of the size-three clusters is perfect according to our tests: in all of them,
the gene tree fits the species tree and for all of them the Populus genes are
located on different chromosomes. Possibly, the high quality of the size-three
clusters can be explained with the strict similarity thresholds that are applied for
considering any pair of genes as homologs in the standard setting of InParanoid.
In any case, even the most strict parameter setting for OAD and OCD yields
a much higher number of clusters, at the cost of cluster quality. In the future,
we plan to investigate more thoroughly the effect of different parameter settings
for InParanoid for these instances.

Conclusions

We presented two models for identifying orthologs and paralogs in the pres-
ence of whole genome duplication. Experiments yield encouraging results, in-
dicating biological relevance of the obtained ortholog groups. While the more
sophisticated model gives better results it is, due to its NP-hardness, algo-
rithmically more challenging and current approaches cannot solve all realistic
instances. Consequently, further algorithmic improvements have to be made in
order to fully estimate the biological quality of its results.

While our goal here was to first evaluate an approach that does not di-
rectly take into account the positions of orthologous genes, the chromosome
test shows that some (very coarse) positional information is recovered by our
model. More precise tests based on positional data are needed, to determine
which of these data may be helpful to incorporate into the model and yield more
relevant orthologs. It would be worthwhile to study a straightforward exten-
sion of our models in which such positional data is included when computing
similarity scores between genes. More generally, it would be interesting to see
whether introducing edge weights leads to improved results, but in this con-
text, an appropriate way of determining the duplication bonus becomes critical.
More complicated combinatorial models that incorporate genome rearrangement
scores might too unfavorably skew the tradeoff between quality and computa-
tion time. In any case, after further algorithmic improvements, a comparison of
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the ortholog quality with positional approaches such as MSOAR [8] and Shao
and Moret’s ILP formulations [7] is of interest.

One further possible application could be to use OAD or OCD as post-
processing of ortholog clusters that are computed by other methods such as
InParanoid but that are not fully resolved.

Finally, it would also be interesting to use the duplication scenario in other
applications or to consider other ways of obtaining the similarity data encoded
in the bipartite graph. Instead of taking only sequence information into account
when computing the bipartite graph G, one might also rely on protein interac-
tion data to compute the edge weights [10]. Using this data, our approach could
also serve as a step in pairwise network alignment between two species where
one has been subject to a whole-genome duplication after the speciation event.

Acknowledgments

We thank Chunfang Zheng (University of Ottawa) for helpful discussions on
the data acquisition.

References

[1] D. M. Kristensen, Y. I. Wolf, A. R. Mushegian, E. V. Koonin, Compu-
tational methods for gene orthology inference, Briefings in Bioinformatics
12 (5) (2011) 379–391.

[2] E. L. L. Sonnhammer, T. Gabaldón, A. W. S. da Silva, M. J. Martin,
M. Robinson-Rechavi, B. Boeckmann, P. D. Thomas, C. Dessimoz, et al.,
Big data and other challenges in the quest for orthologs, Bioinformatics
30 (21) (2014) 2993–2998. doi:10.1093/bioinformatics/btu492.

[3] A. M. Altenhoff, B. Boeckmann, S. Capella-Gutierrez, D. A. Dalquen,
T. DeLuca, K. Forslund, J. Huerta-Cepas, B. Linard, C. Pereira, L. P.
Pryszcz, F. Schreiber, A. S. Da Silva, D. Szklarczyk, C.-M. Train, P. Bork,
O. Lecompte, C. v. Mering, I. Xenarios, K. Sjölander, L. J. Jensen, M. J.
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6. Appendix: Additional Tables

In this section, we give the comparison of OAD and OCD for only those
connected components that were solved by both methods.

Table 6: Average sequence similarity for the predicted paralogs and percentage of clusters
by OAD for which the gene tree matches the sequence tree restricted to components solved
by both the OAD and OCD methods. Here d denotes the duplication bonus and e | x the
BLAST E-value at the xth percentile, % cgt denotes the percentage of size-three clusters with
correct gene trees, % dc denotes the percentage size-three clusters whose predicted paralogs
are located on different chromosomes of Populus.

d e | 75 e | 50 e | 25 % cgt % dc

Ricinus vs. Populus, t = 10−80

−1.1 — — — — —
−0.5 2.06e-124 1.68e-177 0.00e+00 69.47 87.68

0 1.52e-124 5.97e-177 0.00e+00 69.02 87.66
1.0 1.61e-123 2.03e-176 0.00e+00 68.27 87.61

Ricinus vs. Populus, t = 10−140

−1.1 — — — — —
−0.5 0.00e+00 0.00e+00 0.00e+00 84.01 89.01

0 0.00e+00 0.00e+00 0.00e+00 82.37 88.76
1.0 0.00e+00 0.00e+00 0.00e+00 82.00 88.43

Ricinus vs. Populus, t = 0

−1.1 — — — — —
−0.5 0.00e+00 0.00e+00 0.00e+00 95.22 88.69

0 0.00e+00 0.00e+00 0.00e+00 95.05 88.42
1.0 0.00e+00 0.00e+00 0.00e+00 94.59 88.08

Cacao vs. Populus, t = 10−80

−1.1 — — — — —
−0.5 2.83e-117 1.93e-172 0.00e+00 67.68 88.29

0 2.31e-117 6.33e-171 0.00e+00 66.35 87.69
1.0 7.47e-117 1.91e-169 0.00e+00 65.88 87.85

Cacao vs. Populus, t = 10−140

−1.1 — — — — —
−0.5 0.00e+00 0.00e+00 0.00e+00 83.49 88.84

0 0.00e+00 0.00e+00 0.00e+00 82.42 87.76
1.0 0.00e+00 0.00e+00 0.00e+00 81.21 87.57

Cacao vs. Populus, t = 0

−1.1 — — — — —
−0.5 0.00e+00 0.00e+00 0.00e+00 94.54 89.16

0 0.00e+00 0.00e+00 0.00e+00 94.63 88.64
1.0 0.00e+00 0.00e+00 0.00e+00 94.05 88.11

27



Table 7: Average sequence similarity for the predicted paralogs and percentage of clusters
by OCD for which the gene tree matches the sequence tree restricted to components solved
by both the OAD and OCD methods. Here d denotes the duplication bonus and e | x the
BLAST E-value at the xth percentile, % cgt denotes the percentage of size-three clusters with
correct gene trees, % dc denotes the percentage size-three clusters whose predicted paralogs
are located on different chromosomes of Populus.

d e | 75 e | 50 e | 25 % cgt % dc

Ricinus vs. Populus, t = 10−80

−1.1 3.94e-134 0.00e+00 0.00e+00 75.17 90.28
−0.5 1.16e-129 0.00e+00 0.00e+00 71.87 88.56

0 3.07e-129 0.00e+00 0.00e+00 71.61 88.50
1.0 3.52e-129 0.00e+00 0.00e+00 71.51 88.51

Ricinus vs. Populus, t = 10−140

−1.1 0.00e+00 0.00e+00 0.00e+00 88.80 89.99
−0.5 0.00e+00 0.00e+00 0.00e+00 85.65 88.68

0 0.00e+00 0.00e+00 0.00e+00 85.22 88.72
1.0 0.00e+00 0.00e+00 0.00e+00 85.02 88.66

Ricinus vs. Populus, t = 0

−1.1 0.00e+00 0.00e+00 0.00e+00 100.00 89.70
−0.5 0.00e+00 0.00e+00 0.00e+00 98.53 88.35

0 0.00e+00 0.00e+00 0.00e+00 98.07 88.29
1.0 0.00e+00 0.00e+00 0.00e+00 97.71 88.24

Cacao vs. Populus, t = 10−80

−1.1 2.60e-134 0.00e+00 0.00e+00 75.01 90.40
−0.5 8.48e-128 5.87e-180 0.00e+00 70.96 88.56

0 6.78e-126 1.98e-178 0.00e+00 70.11 88.44
1.0 2.34e-125 3.90e-178 0.00e+00 69.88 88.33

Cacao vs. Populus, t = 10−140

−1.1 0.00e+00 0.00e+00 0.00e+00 88.60 89.26
−0.5 0.00e+00 0.00e+00 0.00e+00 85.71 87.80

0 0.00e+00 0.00e+00 0.00e+00 85.23 87.81
1.0 0.00e+00 0.00e+00 0.00e+00 84.91 87.86

Cacao vs. Populus, t = 0

−1.1 0.00e+00 0.00e+00 0.00e+00 100.00 90.14
−0.5 0.00e+00 0.00e+00 0.00e+00 98.36 88.44

0 0.00e+00 0.00e+00 0.00e+00 97.70 88.44
1.0 0.00e+00 0.00e+00 0.00e+00 97.31 88.40
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