
Complexity and Exact Algorithms for Multicut?

Jiong Guo1, Falk Hüffner1, Erhan Kenar2, Rolf Niedermeier1, and
Johannes Uhlmann2

1 Institut für Informatik, Friedrich-Schiller-Universität Jena, Ernst-Abbe-Platz 2,
D-07743 Jena, Germany. {guo,hueffner,niedermr}@minet.uni-jena.de

2 Wilhelm-Schickard-Institut für Informatik, Universität Tübingen, Sand 13,
D-72076 Tübingen, Germany. {kenar,johannes}@informatik.uni-tuebingen.de

Abstract. The Multicut problem is defined as: given an undirected
graph and a collection of pairs of terminal vertices, find a minimum set
of edges or vertices whose removal disconnects each pair. We mainly
focus on the case of removing vertices, where we distinguish between
allowing or disallowing the removal of terminal vertices. Complement-
ing and refining previous results from the literature, we provide several
NP-completeness and (fixed-parameter) tractability results for restricted
classes of graphs such as trees, interval graphs, and graphs of bounded
treewidth.

1 Introduction

Motivation and previous results. Multicut in graphs is a fundamental network
design problem. It models questions concerning the reliability and robustness
of computer and communication networks. Informally speaking, the problem is,
given a graph, to determine a minimum size set of either edges or vertices such
that the deletion of this set disconnects a prespecified set of pairs of terminal

vertices in the graph. In most cases, the problem is NP-complete. There are
many results and variants for Multicut and we refer to Costa, Létocart, and
Roupin [2] for a recent survey.

The major part of the literature deals with the “edge deletion variant” of
Multicut (Edge Multicut) [2, 6–8] whereas our main focus here lies on the
“vertex deletion variant” (Vertex Multicut). Relatively little seems to be
known for Vertex Multicut problems; we are only aware of two recent inves-
tigations [3, 9]. Călinescu, Fernandes, and Reed [3] introduced two variants of
Vertex Multicut:

Unrestricted Vertex Multicut (UVMC)
Input: An undirected graph G = (V,E), a collection H of pairs of
vertices H ⊆ V × V , and an integer k ≥ 0.
Task: Find a subset V ′ of V with |V ′| ≤ k whose removal separates each
pair of vertices in H.

? Research supported by the Deutsche Forschungsgemeinschaft (DFG), Emmy Noether
research group PIAF (fixed-parameter algorithms), NI 369/4.

The vertices appearing in the vertex pairs in H are called terminals and, through-
out this paper, we use S to denote the set of terminals, i.e., S :=

⋃
(u,v)∈H{u, v}.

By way of contrast, in the case of Restricted Vertex Multicut the removal
of terminal vertices is not allowed.

Restricted Vertex Multicut (RVMC)
Input: An undirected graph G = (V,E), a collection H of pairs of
vertices H ⊆ V × V , and an integer k ≥ 0.
Task: Find a subset V ′ of V with |V ′| ≤ k that contains no terminal
and whose removal separates each pair of vertices in H.

Călinescu et al. show that RVMC is NP-complete in bounded-degree trees and
the “easier” UVMC is polynomially solvable in trees but becomes NP-complete
in bounded-degree graphs of treewidth two. Moreover, they give a polynomial-
time approximation scheme (PTAS) for UVMC in bounded treewidth graphs.
Marx [9] extends the results for UVMC (which he calls Minimum Terminal

Pair Separation) by providing an O(2k` · kk · 4k3

· |G|O(1)) time algorithm
for UVMC in general graphs, where k is an upper bound on the vertices to
be removed and ` is the number of terminal pairs. In other words, UVMC is
fixed-parameter tractable (FPT) with respect to the combined parameter (k, `).

Our results. We continue and complement the work of Călinescu et al. [3] and
Marx [9] as follows: We show that the NP-complete RVMC in trees is fixed-
parameter tractable with respect to the parameter k (number of vertex dele-
tions) with the modest running time O(2k · |G| · `) (again, ` is the number of
terminal pairs). Whereas in trees UVMC is polynomial-time solvable but RVMC
is NP-complete [3], we have the surprising result that UVMC is NP-complete in
interval graphs but RVMC is polynomial-time solvable here.3 We also strengthen
the NP-completeness result for RVMC in trees of Călinescu et al. by showing that
NP-completeness already holds for maximum-vertex-degree-three trees whereas
their result only holds for maximum vertex degree four. Note that RVMC is
clearly polynomial-time solvable in paths, that is, trees with maximum vertex de-
gree two. Moreover, we show that RVMC in general graphs is NP-complete even
in case of only three terminal pairs, hence excluding fixed-parameter tractability
with respect to the parameter “number of terminal pairs”. By way of contrast,
we show that RVMC can be solved in O(|S||S|+ω+1 · |G|) time on graphs of
treewidth ω, where S denotes the set of terminal vertices; thus, RVMC is fixed-
parameter tractable with respect to the combined parameter “treewidth” and
“terminal set size”. Observe that there is no hope for fixed-parameter tractabil-
ity exclusively with respect to the parameter |S| or ω. This fixed-parameter
tractability result directly transfers to UVMC as well; indeed, it also works for
the Edge Multicut (EMC) variant. Finally, for Edge Multicut we also prove
NP-completeness in caterpillar graphs with maximum vertex degree five.

Table 1 summarizes most of the presented results.

3 More specifically, the NP-completeness result for UVMC even holds in interval
graphs of pathwidth four.

Table 1. Complexity of Multicut problems for several graph classes. For the parame-
ters, |S| is the number of terminals, k is the number of deletions, and ω is the treewidth
of the input graph. In a row with a parameter, “NP-c” implies hardness even for some
constant parameter value.

Graph class Parameter EMC UVMC RVMC

Interval graphs NP-c [6] NP-c (Thm. 4) P (Thm. 5)

Trees NP-c [6] P (Sect. 2) NP-c [3]
k FPT [8] — FPT (Thm. 2)

General graphs NP-c [4] NP-c [3] NP-c [3]
k open open open
|S| NP-c [4] FPT [9] NP-c (Thm. 6)
ω NP-c [6] NP-c [3] NP-c [3]
ω & |S| FPT (Thm. 9) FPT (Cor. 1) FPT (Thm. 8)

Preliminaries. We introduce some additional terminology. By default, we con-
sider only undirected graphs G = (V,E) without self-loops. A graph is an interval

graph if we can label its vertices by intervals of the real line such that there is an
edge between two vertices iff their intervals intersect. A tree is called caterpillar

if all vertices with degree at least three have at most two neighbors of degree
two or greater. For any graph G = (V,E), we can construct its line graph as
(E, {{e1, e2} ∈ E | e1 ∩ e2 6= ∅}). We use G[V ′] to denote the subgraph of G in-
duced by the vertices V ′ ⊆ V . A set of vertices V ′ ⊆ V is called vertex separator

if G[V \ V ′] has more connected components than G.

A tree decomposition of G is a pair 〈{Xi | i ∈ I}, T 〉, where each Xi is a subset
of V , called bag, and T = (I, F) is a tree with node set I and edge set F . The
following must hold:

⋃
i∈I Xi = V ; for every edge {u, v} ∈ E, there is an i ∈ I

such that {u, v} ⊆ Xi; and for all i, j, l ∈ I, if j lies on the path between i and l
in T , then Xi ∩Xl ⊆ Xj . The width of 〈{Xi | i ∈ I}, T 〉 is max{|Xi| | i ∈ I}− 1.
The treewidth of G is the minimum width over all tree decompositions of G. A
path decomposition is a tree decomposition where T is a path.

A problem of size n is called fixed-parameter tractable (FPT) with respect
to a parameter k if it can be solved in f(k) · nO(1) time, where f is a function
solely depending on the parameter k.

Due to the lack of space, some proofs had to be omitted.

2 Trees

Unrestricted Vertex Multicut in trees is trivially solvable in O(|V | · |H|)
time: Root the tree at an arbitrary vertex. Then, compute the least common
ancestors for all terminal pairs in H and sort these ancestors in a list L according
to the decreasing order of their depth in the rooted tree. Finally, while L 6= ∅,
remove the first element of L and its corresponding vertex from T and delete all

1

2

3

4

5 p qr1 r2 r3 r4 r5

l1 l2 l3 l4 l5

a1 a2 a3 a4 a5

Fig. 1. An example for the reduction from Vertex Cover to RVMC. The left figure
is a Vertex Cover instance and the right is the corresponding RVMC instance with
H = {(l1, l2), (l2, l3), (l3, l4), (l4, l1), (l3, l5), (l4, l5)} ∪ {(ri, q) | 1 ≤ i ≤ 5}. Only the
rectangular vertices can be deleted (all others are terminals).

separated terminal pairs from H and their least common ancestors from L. The
solution is then the removed vertices. We omit further details.

Călinescu et al. [3] show that RVMC is NP-complete in trees with maximum
vertex degree four by giving a reduction from EMC in binary trees. It is easy to
observe that RVMC on trees with maximum vertex degree two, i.e., paths, can
be solved in polynomial time. The complexity of RVMC in trees with maximum
vertex degree three remained open. Here we close this gap.

Theorem 1. Restricted Vertex Multicut in trees with maximum vertex

degree three and pathwidth two is NP-complete.

Proof. The reduction is from the NP-complete Vertex Cover problem, which
for a graph G = (V = {v1, v2, . . . , vn}, E) and k ≥ 0 asks whether there is a set
of vertices V ′ ⊆ V with |V ′| ≤ k such that for every edge {v, w} ∈ E at least
one of v and w is in V ′. Construct the tree T = (W,F) with

W := {li, ai, ri | 1 ≤ i ≤ n} ∪ {p, q}

and

F := {{li, ai}, {ai, ri} | 1 ≤ i ≤ n} ∪ {{ri, ri+1} | 1 ≤ i < n} ∪ {{rn, p}, {p, q}}.

As the set of terminal pairs H we take for each vertex vi ∈ V the pair (ri, q)
and, moreover, for each edge {vi, vj} ∈ E, we add (li, lj). See Fig. 1 for an
example of the construction.

It is easy to show that the Vertex Cover instance has a solution with
no more than k vertices iff the constructed RVMC instance can be solved by
removing at most k + 1 vertices. The constructed tree clearly has maximum
vertex degree three and a path decomposition with pathwidth equal to two. ut

In the following, we show that RVMC in trees can be solved in O(2k ·|V |·|H|)
time, where k denotes the allowed number of vertex removals. The basic idea
is to modify the above polynomial-time algorithm for UVMC in trees into a
depth-bounded search tree algorithm.

Let T = (V,E) be the input instance and S :=
⋃

(u,v)∈H{u, v} the set of
terminals. The first step is to “contract” edges with both endpoints being ter-
minals: For an edge {u, v} with u, v ∈ S, we have (u, v) /∈ H, since otherwise
the instance is not solvable. Delete both u and v and the edge between them
from T ; insert a new vertex w into T and set N(w) := N(u) ∪ N(v) \ {u, v}.
Furthermore, replace each u and v in H by w. It is easy to see that this step
does not change the solution.

Then, the search tree algorithm proceeds as the polynomial-time algorithm
for UVMC in trees: root T in an arbitrary vertex, compute the least common
ancestors of all terminal pairs and sort them by decreasing depth in a list L.
While L 6= ∅, consider the first element u of L, which is the least common
ancestor of a terminal pair (v, w). If u is a nonterminal, then remove it and
update L and T ; otherwise, there are two cases: If u = v or u = w, then we
delete the neighbor of u that lies on the path from u to w or v. This neighbor has
to be a nonterminal due to the first step. Otherwise, we have u 6= v and u 6= w.
Then u has two nonterminals as neighbors lying on the path between v and w
and we branch into two cases, in each case removing one of the two neighbors.

Finally, if there is a node in the search tree where L = ∅ and at most k
vertices have been removed, then we have a solution. It is easy to observe that
the depth of the search tree is bounded by k and its size is O(2k).

Theorem 2. Restricted Vertex Multicut in trees can be solved in O(2k ·
|V | · |H|) time, where k is the number of allowed vertex removals.

3 Interval Graphs

As mentioned in the introduction, RVMC is at least as hard as UVMC in general
graphs and many special graph classes: From an instance of UVMC we can
obtain an RVMC instance by adding for each terminal s a new degree-1 vertex s′

adjacent only to s. Each terminal pair (s, t) is substituted by (s′, t′). Then,
solving RVMC in this new instance is equivalent to solving UVMC in the original
instance. However, the class of interval graphs is an exception, that is, UVMC
is NP-complete in interval graphs while RVMC is solvable in polynomial time:

Unrestricted Vertex Multicut in Interval Graphs. To show the NP-completeness
of UVMC in interval graphs, we first show that Edge Multicut is NP-complete
in caterpillars and then reduce EMC in caterpillars to UVMC in interval graphs.
We use a reduction from 3-SAT, which is similar to the reduction used to show
the NP-completeness of EMC in binary trees [3, Theorem 6.1].

Theorem 3. Edge Multicut in caterpillars with maximum vertex degree five

is NP-complete.

The second reduction from EMC in caterpillars with maximum vertex degree
five to UVMC in interval graphs with pathwidth four is—analogous to [3]—
executed by constructing the line graph of the caterpillar:

Theorem 4. Unrestricted Vertex Multicut in interval graphs with path-

width at least four is NP-complete.

Restricted Vertex Multicut in Interval Graphs. In contrast to EMC4 and UVMC,
which are NP-complete for interval graphs even with bounded pathwidth, we
now give a dynamic programming algorithm solving RVMC in interval graphs
in polynomial time.

For an interval graph G = (V,E), we can construct a path decomposition
in O(|V | + |E|) time such that each bag one-to-one corresponds to a maximal
clique of G (see Booth and Lueker [1]). The minimal vertex separators of G
are the intersections of two neighboring bags in the path decomposition and are
also cliques. The following lemma shows that the minimal vertex separators are
crucial for solving RVMC in interval graphs.

Lemma 1. Any optimal solution of RVMC in interval graphs consists of a se-

lection of the minimal vertex separators, that is, for each vertex v in an optimal

solution C for RVMC in an interval graph G, there is a minimal vertex separa-

tor Y of G such that v ∈ Y and Y ⊆ C.

Based on Lemma 1, we only consider the minimal vertex separators of G. Note
that we exclude the vertex separators containing terminals since such vertex sep-
arators cannot be contained in an optimal solution for RVMC. Let Y1, Y2, . . . , Yr

with r ≤ |V | be the minimal vertex separators obtained by the path decom-
position of G. For each 1 ≤ i ≤ r we define Pi ⊆ H as the set containing the
terminal pairs that are disconnected in G[V \ Yi]. Let Hi :=

⋃
1≤j≤i Pj . Note

that Hr = H; otherwise, the given instance has no solution. Due to the third
property of the path decomposition (see Sect. 1), the minimal separators can
be linearly ordered such that they fulfill the following “consistency condition”:
Yi ∩ Yl ⊆ Yj for all Yi, Yj , Yl with i ≤ j ≤ l. In addition, the sets Pi associated
with Yi, 1 ≤ i ≤ r, fulfill also this consistency condition.

Now, we can formulate RVMC as a covering problem: Solving RVMC in
interval graphs is equivalent to finding a subset Z of {1, 2, . . . , r} with

⋃
i∈Z Pi =

H and |
⋃

i∈Z Yi| ≤ k. Observe that, although at first sight they are very similar,
there is a decisive difference to the classical Set Cover problem.5 In our case,
we have two subset systems, one is the set H and its subsets P1, P2, . . . , Pr

and the other is V and its subsets Y1, Y2, . . . , Yr. Each Pi is associated with
the subset of V with the same index, i.e., Yi. The task is to select some sets
from P := {P1, P2, . . . , Pr} to cover H. However, instead of minimizing the
number of selected subsets from P as in Set Cover, we minimize |

⋃
Pi∈P′ Yi|

where P ′ denotes the set of the selected subsets from P.

4 EMC is NP-complete even in stars [6], which are interval graphs with pathwidth
one.

5 The in general NP-complete Set Cover problem can be solved in polynomial time
on instances where the subsets in the subset collection can be linearly ordered such
that they fulfill the consistency condition described above [10].

Observe that the minimal separators are not pairwise disjoint, i.e., there may
be two Yi and Yj with i 6= j and Yi ∩ Yj 6= ∅. On the one hand, this forbids
assigning to each Pi a weight equal to |Yi| and solving a “weighted” version of
Set Cover, since |

⋃
Pi∈P′ Yi| is not always equal to

∑
Pi∈P′ |Yi|. On the other

hand, for two separators Yi and Yj with i 6= j and Yi∩Yj 6= ∅, the selection of Yj

may affect the decision concerning the selection of Yi and vice versa.
The key idea of the algorithm for this special covering problem is to ex-

ploit the consistency property of the minimal separators Yi and their associated
sets Pi: Order the minimal vertex separators Yi and the associated sets Pi linearly
such that they fulfill the consistency property. Then, the algorithm processes this
linear ordering from i = 1 to i = r. At each i, it computes the best “local so-
lution” to cover Hi by using only P1, . . . , Pi. As mentioned above, the selection
of Yj with j > i may affect the decision concerning the selection of Yi. To cope
with this, the algorithm computes not only one local solution but r − i + 1 val-
ues for each i. The first value Bi represents the best local solution under the
assumption that no j with i < j ≤ r and Yj ∩ Yi 6= ∅ will be added into the
global solution. Each of the other r− i values Fi,j represents, for each i < j ≤ r,
the best local solution under the assumption that j but no l with i < l < j
and Yl ∩ Yi 6= ∅ will be added to the global solution. Note that due to the con-
sistency condition, Fi,j is equal to the best local solution under the assumption
that j and l will be added to the global solution for any l > j.

When reaching r, there are at most two cases to consider: r is in the global
solution or it is not. If it is not, then the local solution Br−1 turns out to be the
global solution; otherwise, |Yr| + min1≤i<r{Fi,r | (H \ Pr) ⊆ Hi } is the global
solution.

In the following, we give the formal description of the algorithm.
For each i, 1 ≤ i ≤ r, we will compute Bi and Fi,j , i < j ≤ r, such that the

following invariants hold:

Bi = min{ |
⋃

l∈Z

Yl| | Z ⊆ {1, . . . , i} and Hi =
⋃

l∈Z

Pl },

Fi,j = min{ |
⋃

l∈Z

(Yl \ Yj)| | Z ⊆ {1, . . . , i} and Hi =
⋃

l∈Z

Pl }.

In order to simplify the presentation, we introduce Y0 := ∅, P0 := ∅, H0 := ∅,
B0 := 0, and F0,j := 0 for all 1 ≤ j ≤ r. We start with the initialization B1 :=
|Y1| and for all 1 < j ≤ r let F1,j := |Y1 \ Yj |.

When reaching i with 1 < i < r, we consider two cases.
Case 1. Pi * Pi−1.
We set

Bi := |Yi| + min
0≤l<i

{Fl,i | (Hi \ Pi) ⊆ Hl };

Fi,j := |Yi \ Yj | + min
0≤l<i

{Fl,i | (Hi \ Pi) ⊆ Hl }, for each i < j ≤ r.

This computation is correct since we have to take i to have a local solution.
Then, Bi is set equal to the sum of |Yi| and the minimum of the local solutions

to cover Hi \ Pi under the assumption that i is already a part of the solution.
The value of Fi,j is set analogously.
Case 2. Pi ⊆ Pi−1.
We set

Bi := min{Bi−1, |Yi| + min
0≤l<i

{Fl,i | (Hi \ Pi) ⊆ Hl }};

Fi,j := min{Fi−1,j , |Yi \ Yj | + min
0≤l<i

{Fl,i | (Hi \ Pi) ⊆ Hl }}, for each i < j ≤ r.

In this case, we choose the minimum of the two alternatives of adding i to
the solution or not. Therefore, the correctness follows from the correctness of
Case 1.

Theorem 5. Restricted Vertex Multicut in interval graphs can be solved

in O(|V |2 · |H|2) time.

4 General Graphs and Bounded Treewidth

In this section, we present a fixed-parameter algorithm for RVMC in general
graphs with treewidth and the number of terminals as parameters. Marx [9]
shows that UVMC is fixed-parameter tractable with respect to the number of
vertex removals and the number of terminal pairs.

As shown in Theorem 1, RVMC is NP-complete for tree networks with
bounded vertex degree and bounded pathwidth. Therefore, we cannot hope for
a fixed-parameter algorithm with only treewidth or pathwidth as parameter.
Moreover, in the following theorem we show that RVMC is not fixed-parameter
tractable with respect to the number of terminals. For the proof, we give a re-
duction from EMC to RVMC that preserves the number of terminals and the
number of terminal pairs. The theorem follows then from the fact that EMC is
NP-complete for more than two input terminal pairs [4].

Theorem 6. Restricted Vertex Multicut is NP-complete if there are at

least six terminals.

Now we know that there is no hope for a fixed-parameter algorithm for RVMC
with respect to the single parameter treewidth or number of terminals. In the
following, we present the fixed-parameter algorithm for RVMC with treewidth
and the number of the terminals as parameters. The basic idea of this algo-
rithm comes from the observation that any solution of RVMC divides the input
graph into at least two connected components such that any two terminals of
an input terminal pair are not in the same connected component. Based on this
observation, the algorithm consists of two phases. The first phase enumerates all
possible partitions of the terminal set that separate all input terminal pairs. It is
easy to observe that there are at most O(|S||S|) many partitions of the terminal
set S. To check whether a partition separates the given terminal pairs in H can
be done in O(|H|) time. Then, the run time of the first phase is O(|S||S| · |H|).

The second phase of the algorithm, for each partition, uses dynamic pro-
gramming on the tree decomposition to compute the minimum number of vertex
removals dividing the input graph into connected components such that each set
in this partition is contained in a connected component and no two sets are
contained in the same connected component. To simplify the presentation, we
give an equivalent formulation of the task of the second phase:6

Coloring Extension

Input: An undirected graph G = (V,E), a set of terminals S ⊆ V , and
a pre-coloring LS : S → C with the colors from a set C where |C| ≤ |S|.
Task: Find an extension LG,S of LS with the colors from C ∪ {r}
where r /∈ C such that

1. for every s ∈ S, LG,S(s) = LS(s),
2. for every edge {u, v} ∈ E, either LG,S(u) = LG,S(v) or LG,S(u) = r

or LG,S(v) = r, and
3. the cost |{v ∈ V | LG,S(v) = r}| is minimized.

Assume we have a fixed partition of the terminal set. If we assign to every
terminal in a set of this partition a color from C, then a solution of the coloring
problem ensures that every path between two terminals with different initial
colors has to pass through at least one vertex v with LG,S(v) = r. This implies
that the removal of the vertices with color r separates the sets, which is a solution
for the RVMC problem.

Theorem 7. Given an undirected graph G = (V,E) with a tree decomposition

of width ω, Coloring Extension with the terminal set S ⊆ V pre-colored by

the color set C can be solved in O((|C| + 1)ω+1 · (|V | + |E|)) time.

In summary, the first phase of the algorithm for RVMC enumerates all pos-
sible partitions of the terminal set S that separate all input terminal pairs. In
the second phase, for each partition, the algorithm colors the terminal set ac-
cording the partition by using at most |S| colors and, then, calls the dynamic
programming algorithm for the Coloring Extension problem. The minimum
of the outputs of the dynamic programming algorithm for all partitions is then
the optimal solution for RVMC. By a simple traceback phase, one can easily
construct the set of the vertices to be removed. The main theorem then follows
directly from the correctness and run times of the two phases.

Theorem 8. Given an undirected graph G = (V,E) with a tree decomposition

of width ω, Restricted Vertex Multicut can be solved in O(|S||S|+ω+1 ·
(|V | + |E|)) time, where S is the terminal set.

UVMC can be reduced to RVMC with the same number of terminals and the
same treewidth (Sect. 3). Therefore, the above algorithm also works for UVMC.

6 A similar coloring problem is defined by Erdős and Székely [5]. Note that here we
have a different cost function.

Corollary 1. Given an undirected graph G = (V,E) with a tree decomposition

of width ω, Unrestricted Vertex Multicut can be solved in O(|S||S|+ω+1 ·
(|V | + |E|)) time, where S is the terminal set.

Actually, the same approach can also be applied to EMC. Here, the goal is
to minimize the number of the “color-changing” edges, whose endpoints have
different colors, while extending a coloring of the terminal set. The dynamic
programming on the tree decomposition is almost the same. We omit the details.

Theorem 9. Given an undirected graph G = (V,E) with a tree decomposition

of width ω, Edge Multicut can be solved in O(|S||S|+ω+1 · (|V | + |E|)) time,

where S is the terminal set.

References

1. K. S. Booth and G. S. Lueker. Testing for the consecutive ones property, interval
graphs, and graph planarity using PQ-tree algorithms. Journal of Computer and

System Sciences, 13:335–379, 1976.
2. M. Costa, L. Létocart, and F. Roupin. Minimal multicut and maximal integer

multiflow: a survey. European Journal of Operational Research, 162(1):55–69, 2005.
3. G. Călinescu, C. G. Fernandes, and B. Reed. Multicuts in unweighted graphs and

digraphs with bounded degree and bounded tree-width. Journal of Algorithms,
48:333–359, 2003.

4. E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and M. Yan-
nakakis. The complexity of multiterminal cuts. SIAM Journal on Computing,
23(4):864–894, 1994.

5. P. L. Erdős and L. A. Székely. Evolutionary trees: an integer multicommodity
max-flow–min-cut theorem. Advances in Applied Mathematics, 13:375–389, 1992.

6. N. Garg, V. Vazirani, and M. Yannakakis. Primal-dual approximation algorithms
for integral flow and multicut in trees. Algorithmica, 18(1):3–20, 1997.

7. J. Guo and R. Niedermeier. Exact algorithms and applications for Tree-Like
Weighted Set Cover. To appear in Journal of Discrete Algorithms, 2005.

8. J. Guo and R. Niedermeier. Fixed-parameter tractability and data reduction for
Multicut in Trees. Networks, 46(3):124–135, 2005.

9. D. Marx. Parameterized graph separation problems. In Proc. 1st IWPEC, volume
3162 of LNCS, pages 71–82. Springer, 2004. Long version to appear in Theoretical

Computer Science.
10. A. F. Veinott and H. M. Wagner. Optimal capacity scheduling. Operations Re-

search, 10:518–532, 1962.

