
Parameterized Algorithmics for Finding Exact
Solutions of NP-Hard Biological Problems

Falk Hüffner1 Christian Komusiewicz1 Rolf Niedermeier1
Sebastian Wernicke2

1Institut für Softwaretechnik und Theoretische Informatik, TU Berlin, Germany
{falk.hueffner,christian.komusiewicz,rolf.niedermeier}@tu-berlin.de

2Seven Bridges Genomics, Cambridge, MA, USA
sebastian.wernicke@sbgenomics.com

Abstract

Fixed-parameter algorithms are designed to efficiently find optimal
solutions to some computationally hard (NP-hard) problems by identifying
and exploiting “small” problem-specific parameters. We survey practical
techniques to develop such algorithms. Each technique is introduced and
supported by case studies of applications to biological problems, with
additional pointers to experimental results.
Key Words: Computational intractability; NP-hard problems; al-
gorithm design; exponential running times; discrete problems; fixed-
parameter tractability; optimal solutions.

1 Introduction
Many problems that emerge in bioinformatics require vast amounts of computer
time to be solved optimally. An illustrative example, though somewhat oversim-
plified, would be the following: Given a set of n experiments of which some pairs
have conflicting results (that is, at least one result must be wrong), identify a
minimum-size subset of experiments to eliminate such that no conflict remains.
This problem, while simple to describe, has no known algorithm that solves
it efficiently on all inputs. From a theoretical standpoint, such computational
hardness can be traced back to the NP-hardness of a problem. Assuming a widely
believed conjecture in complexity theory, the classification of a computational
problem as NP-hard implies that the time needed to solve it grows very quickly
(usually exponentially) with the input size [62]. However, the demand to solve
NP-hard problems commonly arises in practical settings, including bioinformatics.
To obtain solutions to these problems despite their NP-hardness, it is common
to sacrifice solution quality for efficiency, for example by employing heuristic
algorithms or approximation algorithms. A different approach is to insist on
exact solutions and accept that the algorithm will not be efficient on all inputs
but hopefully on those that arise in the application at hand.

Most theory on computational hardness is based on the assumption that the
difficulty of solving an instance of a computational problem is determined by
the size of that instance. The crucial observation this chapter is based on is that

1

often it is not the size of an instance that makes a problem computationally
hard to solve, but rather its structure. Parameterized algorithmics renders this
observation precise by quantifying structural hardness with so-called parameters,
typically a nonnegative integer variable denoted by k or a tuple of such variables.
A parameterized problem is then called fixed-parameter tractable (FPT) if it can
be solved efficiently when the parameter is small; the corresponding algorithm
is called fixed-parameter algorithm. The concept of fixed-parameter tractability
thus formalizes and generalizes the concept of “tractable special cases” that are
known for virtually all NP-hard problems. For example, as we will discuss in
more detail below, our introductory problem can be solved quickly whenever the
number of conflicting experiments is small (a reasonable assumption in practical
settings, since the results would otherwise not be worth much anyway).

Often, there are many possible parameters to choose from. For example,
for solving our introductory problem we could choose the maximum number of
conflicts for a single experiment to be the parameter or, alternatively, the size of
the largest group of pairwise conflicting experiments. This makes parameterized
algorithmics a multipronged attack that can be adapted to different practical
applications. Of course, not all parameters lead to efficient algorithms; in fact,
parameterized algorithmics also provides tools to classify parameters as “not
helpful” in the sense that we cannot expect provably efficient algorithms even
when these parameters are small.

Fixed-parameter algorithms have by now facilitated many success stories
and several techniques have emerged as being applicable to large classes of prob-
lems [84]. This chapter presents several of these techniques, namely kernelization
(Section 2), depth-bounded search trees (Section 3), dynamic programming
(Section 4), tree decompositions of graphs (Section 5), color-coding (Section 6),
and iterative compression (Section 7). We start each section by introducing the
basic concepts and ideas, followed by some case studies concerning practically
relevant bioinformatics problems. Concluding each section, we survey known
applications, implementations, and experimental results, thereby highlighting
the strengths and fields of applicability for each technique.

Another commonly used strategy for exactly solving NP-hard problems is to
reduce the problem at hand to “general-purpose problems” such as integer linear
programming [7, 8] and satisfiability solving [15, 106, 127]. For these, there exist
highly optimized tools with years of algorithm engineering effort that went into
their development. Therefore, if an NP-hard problem can be efficiently expressed
as one of these general-purpose problems, these tools might be able to find an
optimum solution without the need for any further algorithm design. In many
application scenarios, it will actually make sense to try and combine these general-
purpose approaches and the more problem-specific approach of parameterized
algorithmics since the specific advantage of fixed-parameter algorithms is that
they are usually crafted directly for the problem at hand and thus may allow a
better exploitation of problem-specific features to substantially gain efficiency. In
particular, the polynomial-time data reduction techniques that are introduced in
Section 2 usually combine nicely and productively with the more general solver
tools.

Before discussing the main techniques of fixed-parameter algorithms in the
following sections, the remainder of this section provides a crash course in compu-
tational complexity theory and a few formal definitions related to parameterized
complexity analysis. Furthermore, some terms from graph theory are introduced,

2

and we present our running example problem Vertex Cover.

1.1 Computational Complexity Theory
In this survey, we are concerned with efficiently solving computational prob-
lems. A standard format for specifying these problems is to phrase them in
an “Input /Task” way that formally specifies the input and desired output. A
core topic of computational complexity theory is the evaluation and comparison
of different algorithms for a given problem [107, 114]. Since most algorithms
are designed to work with variable inputs, the efficiency (or complexity) of an
algorithm is not just stated for some concrete inputs (instances), but rather as a
function that relates the input length n to the number of steps that are required
to execute the algorithm. Generally, this function is given in an asymptotic
sense, the standard way being the big-O notation where we write f(n) = O(g(n))
to express that f(n)/g(n) is upper-bounded by a positive constant in the limit
for large n [46, 87, 123]. Since instances of the same size might take different
amounts of time, it is implicitly assumed in this chapter that we are considering
the worst-case running time among all instances of the same size; that is, we
deliberately exclude from our analysis the potentially efficient solvability of some
specific input instances of a computational problem.

Determining the computational complexity of problems (meaning the best
possible worst-case running time of an algorithm for them) is a key issue in
theoretical computer science. Herein, it is of central importance to distinguish
between problems that can be solved efficiently and those that presumably
cannot. To this end, theoretical computer science has coined the notions of
polynomial-time solvability on the one hand and NP-hardness on the other [62].
Here, polynomial-time solvability means that for every size-n input instance of
a problem, an optimal solution can be computed in nO(1) time. In contrast,
the (unproven, yet widely believed) working hypothesis of theoretical computer
science is that NP-hard problems cannot be solved in nO(1) time. More specif-
ically, typical running times for NP-hard problems are of the form O(cn) for
some constant c > 1; that is, we have an exponential growth in the number
of computation steps as instances grow larger. In this sense, polynomial-time
solvability has become a synonym for efficient solvability.

As there are thousands of known NP-hard optimization problems and their
number is continuously growing [107, 115], several approaches have been de-
veloped that try to circumvent the assumed computational intractability of
NP-hard problems. One such approach is based on polynomial-time approxima-
tion algorithms, where one gives up seeking optimal solutions in order to have
efficient algorithms [9, 128, 131]. Another common strategy is to use heuristics,
where one gives up provable performance guarantees (concerning running time or
solution quality) by developing algorithms that behave well in “most” practical
applications [105, 107].

1.2 Parameterized Complexity
For many applications, the compromises inherent to approximation algorithms
and heuristics are not satisfactory. Fixed-parameter algorithms can provide an
alternative by providing exact solutions with useful running time guarantees [54,
60, 110]. The core concept is formalized as follows.

3

Definition 1. A parameterized problem instance consists of a problem instance I
and a parameter k. A parameterized problem is fixed-parameter tractable if it
can be solved in f(k) · |I|O(1) time, where f is a (computable) function solely
depending on the parameter k.

For NP-hard problems, f(k) will typically be an exponential function like 2k

rather than a polynomial function.
Note that the concept of fixed-parameter tractability is different from the

notion of “polynomial-time solvable for fixed k”; an algorithm running in |I|f(k)
time demonstrates that a problem is polynomial-time solvable for any fixed k,
but does not show fixed-parameter tractability, since the exponent needs to be a
constant; ideally, a fixed-parameter algorithm provides a linear-time algorithm
for each fixed k [14].

As an example for this “parameterized perspective”, consider again the iden-
tification of k faulty experiments among n experiments. We could naively solve
this problem in O(2n) time by trying all possible subsets of the n experiments.
However, this would not be practically feasible for n > 40. In contrast, a simple
fixed-parameter algorithm with running time O(2k · n) exists for this problem,
which allows it to be solved even for n > 1000, as long as k < 20 (as we will
discuss in Section 2.4, real-world instances can often be solved for much larger
values of k by an extension of this approach).

Unfortunately, there are parameterized problems for which there is good
evidence that they are not fixed-parameter tractable (see Note 1).

A few words on the art of problem parameterization. Typically, a prob-
lem allows for more than one parameterization [91, 111]. From a theoretical
point of view, parameterization is a key to better understand the nature of
computational intractability. The ultimate goal here is to learn how parameters
influence the computational complexity of problems. The more we know about
these interactions, the more likely it becomes to cope with computational in-
tractability. In a sense, it may be considered as an art to find the most useful
parameterizations of a computational problem.

From an applied point of view, the identification of parameters for a concrete
problem should go hand-in-hand with an extensive data analysis. One natural way
for spotting relevant parameterizations of a problem in real-world applications is
to analyze the given input data and check which quantifiable aspects of it appear
to be small and might thus be suitable as parameters. For example, if the input is
a network, one such observable parameter could be the maximum vertex degree.
Often, real-world input instances also carry some hidden structure that might
be exploited. Again turning to graphs, well-known parameters such as such
as “feedback vertex set number” or “treewidth” measure how tree-like a graph
is. These parameters are motivated by the observation that many intractable
graph problems become tractable when restricted to trees. For NP-hard string
problems, which also occur frequently in bioinformatics, natural parameters are
for example the size of the alphabet or the number of occurrences of a letter [36].

1.3 Graph Theory
Many of the problems we deal with in this work can be formulated in graph-
theoretic terms [49, 129]. An undirected graph G = (V,E) is given by a set

4

Figure 1: A graph with a size-8 vertex cover (cover vertices are marked black).

of vertices V and a set of edges E, where each edge {v, w} is an undirected
connection of two vertices v and w. Throughout this work, we use n := |V | to
denote the number of vertices and m := |E| to denote the number of edges. For
a set of vertices V ′ ⊆ V , the induced subgraph G[V ′] is the graph (V ′, {{v, w} ∈
E | v, w ∈ V ′}), that is, the graph G restricted to the vertices in V ′. We denote
the open neighborhood of a vertex v by N(v) := {u | {u, v} ∈ E} and its closed
neighborhood by N [v] := N(v) ∪ {v}.

It is not hard to see that we can formalize our introductory problem of
recognizing faulty experiments as a graph problem where vertices correspond
to experiments and edges correspond to pairs of conflicting experiments. Thus,
we need to choose a small set of vertices (the experiments to eliminate) so that
each edge is incident with at least one chosen vertex. This is known as the
NP-hard Vertex Cover problem, which serves as a running example for several
techniques in this work.

Vertex Cover
Input: An undirected graph G = (V,E) and a nonnegative integer k.
Task: Find a set C ⊆ V of at most k vertices such that each edge in E
has at least one of its endpoints in C.

The problem is illustrated in Figure 1. Vertex Cover can well be considered
a poster child of fixed-parameter research, as many discoveries that influenced
the whole field originated from the study of this single problem.

2 Kernelization: Data Reduction With Guaran-
teed Effectiveness

The idea of data reduction is to quickly presolve those parts of a given problem
instance that are easy to cope with, shrinking it to those parts that form its
hard core [76, 95]. Computationally expensive algorithms need then only be
applied to this core. In some practical scenarios, data reduction may even
reduce instances of a seemingly hard problem to triviality. Once an effective
(and efficient) reduction rule has been found, it is typically not only useful in
the context of parameterized algorithmics, but also in other problem solving
contexts, whether they be heuristic, approximative, or exact.

This section introduces the concept of kernelization, that is, polynomial-time
data reduction with guaranteed effectiveness. Kernelization is closely connected
to fixed-parameter tractability and emerges within its framework.

5

2.1 Basic Concepts
There are many examples of combinatorial problems that would not be solvable
without employing heuristic data reduction and preprocessing algorithms. For
example, commercial solvers for hard combinatorial problems such as the integer
linear program solver CPLEX heavily rely on data-reducing preprocessors for
their efficiency [16]. Obviously, many practitioners are aware of the general
concept of data reduction. Parameterized algorithmics adds to this by providing
a way to use data reduction rules not only heuristically, but with guaranteed
performance quality. These so-called kernelizations guarantee an upper bound
on the size of the reduced instance, which solely depends on the parameter value.
More precisely, the concept is defined as follows:

Definition 2 ([54, 110]). Let I be an instance of a parameterized problem with
given parameter k. A reduction to a problem kernel (or kernelization) is a
polynomial-time algorithm that replaces I by a new instance I ′ and k by a new
parameter k′ such that

• the size of I ′ and the value of k′ are guaranteed to only depend on some
function of k, and

• the new instance I ′ has a solution with respect to the new parameter k′ if
and only if I has a solution with respect to the original parameter k.

Kernelizations can help to understand the practical effectiveness of some data
reduction rules and, conversely, the quest for kernelizations can lead to new and
powerful data reduction rules based on deep structural insights.

Intriguingly, there is a close connection between fixed-parameter tractable
problems and those problems for which there exists a kernelization—in fact, they
are exactly the same [38]. Unfortunately, the running time of a fixed-parameter
algorithm directly obtained from a kernelization is usually not practical and,
in the other direction, there exists no constructive scheme for developing data
reduction rules for a fixed-parameter tractable problem. Nevertheless, this
equivalence can establish the fixed-parameter tractability and amenability to
kernelization of a problem by knowing just one of these two properties.

2.2 Case Studies
In this section, we first illustrate the concept of kernelization by a simple
example concerning the Vertex Cover problem. We then show a more involved
kernelization algorithm for the graph clustering problem Cluster Editing.
Finally, we discuss the limits of the kernelization approach for fixed-parameter
tractable problems and present an extension of the kernelization concept that
can be used to cope with the nonexistence of problem kernels.

2.2.1 A Simple Kernelization for Vertex Cover

Consider our running example Vertex Cover. In order to cover an edge in the
graph, one of its two endpoints must be in the vertex cover. If one of these is a
degree-1 vertex (that is, it has exactly one neighbor), then the other endpoint
has the potential to cover more edges than this degree-1 vertex, leading to a first
data reduction rule.

6

Reduction Rule VC1
If there is a degree-1 vertex, then put its neighboring vertex into the
cover.

Here, “put into the cover” means adding the vertex to the solution set and
removing it and its incident edges from the instance. Note that this reduction
rule assumes that we are only looking for one optimal solution to the Vertex
Cover instance we are trying to solve; there may exist other minimum vertex
covers that do include the reduced degree-1 vertex (see Note 2).

After having applied Rule VC1, we can further do the following in the
fixed-parameter setting where we ask for a vertex cover of size at most k.

Reduction Rule VC2
If there is a vertex v of degree at least k + 1, then put v into the cover.

The reason this rule is correct is that if we did not take v into the cover, then we
would have to take every single one of its k + 1 neighbors into the cover in order
to cover all edges incident with v. This is not possible because the maximum
allowed size of the cover is k.

After exhaustively performing Rules VC1 and VC2, all vertices in the re-
maining graph have degree at most k. Thus, at most k edges can be covered
by choosing an additional vertex into the cover. Since the solution set may be
no larger than k, the remaining graph can have at most k2 edges if it has a
solution. Clearly, we can assume without loss of generality that there are no
isolated vertices (that is, vertices with no incident edges) in a given instance. In
conjunction with Rule VC1, this means that every vertex has degree at least
two. Hence, the remaining graph can contain at most k2 vertices.

Stepping back, what we have just done is the following: After applying two
polynomial-time data reduction rules to an instance of Vertex Cover, we
arrived at a reduced instance whose size can be expressed solely in terms of the
parameter k. Hence, considering Definition 2, we have found a kernelization for
Vertex Cover.

2.2.2 A Kernelization for Cluster Editing

In the above example kernelization for Vertex Cover, there is a notable
difference between Rules VC1 and VC2: Rule VC1 is based on a local opti-
mality argument whereas Rule VC2 makes explicit use of the parameter k. In
applications, the first type of data reduction rules is usually preferable, as they
can be applied independently of the value of k and this value is only used in
the analysis of the power of the data reduction rules. For the NP-hard graph
clustering problem Cluster Editing, we now present an efficient kernelization
algorithm that is based solely on a data reduction rule of the first type.

Cluster Editing
Input: An undirected graph G = (V,E), an edge-weight function ω :
V 2 → N+, and a nonnegative integer k.
Task: Find whether we can modify G to consist of vertex-disjoint cliques
(that is, fully connected components) by adding or deleting a set of edges
whose weights sum up to at most k.

Cluster Editing can be used, for example, to cluster proteins with high
sequence similarity [22] and to identify cancer subtypes [133]; a comprehensive

7

Figure 2: Illustration for Cluster Editing with unit weights: By removing
two edges from and adding one edge to the graph on the left (that is, k = 3), we
can obtain a graph that consists of two vertex-disjoint cliques.

overview of its applications is given by Böcker & Baumbach [21]. Many theoretical
studies consider the case in which all edges have weight one, but the weighted
version of Cluster Editing is more relevant in biological applications. The
positive edge weights describe the cost to delete an existing edge or to insert a
missing edge, respectively. Figure 2 shows an instance of the unweighted problem
variant together with a solution. A simple kernelization for Cluster Editing
uses similar high-degree reduction rules as the Vertex Cover kernelization
described above. These rules yield a kernel with O(k2) vertices [66]. This bound
can be improved to O(k) vertices using reduction rules whose correctness is based
on local optimality arguments. We now describe such a kernelization algorithm
for Cluster Editing that was developed by Cao & Chen [40].

The idea of this kernelization is to examine for each vertex v of the graph
whether its neighborhood is already very dense and only loosely connected to
the rest of the graph. If this is the case, then it is optimal to put all neighbors
of v in the same cluster as v. This knowledge can be used to identify edges that
have to be deleted or edges that have to be added. Formally, the algorithm
computes the sum of the weights of the missing edges in the neighborhood N [v];
this number is denoted by δ(v). Then it computes the sum of the edge weights
between N [v] and V \N [v]; this number is denoted γ(v). These two measures
are combined to form what is called the stable cost of a vertex v defined as
c(v) = 2δ(v) + γ(v). Now a vertex v is called reducible if c(v) < |N [v]|. The
main consequence of being reducible is that if N [v] is reducible, then there is an
optimal solution such that N [v] is contained in a single cluster. This implies the
correctness of the following data reduction rules; an example application of the
first two reduction rules is given in Figure 3.

The first rule adds missing edges in neighborhoods of reducible vertices.

Reduction Rule CE1
If there is a reducible vertex v and a pair of vertices u, x in N [v] that
are not neighbors, then add {u, x} to G and decrease k by ω({u, x}).

The next rule finds vertices that have some but only few neighbors in N [v].
In an optimal solution, these vertices are never in the same cluster as N [v]. Thus,
the edges between these vertices and N [v] may be deleted.

Reduction Rule CE2
If there is a reducible vertex v and a vertex u /∈ N [v] such that it
is more costly to add all missing edges between u and N [v] than to
remove all edges between u and N [v], then remove all edges between u
and N [v] and decrease k accordingly.

The final rule merges N [v] into one vertex and adjusts the edge weights
accordingly.

8

v u w

Rule CE1

v u w

Rule CE2

v u w

Figure 3: The application of Reduction Rules CE1 and CE2 to an instance of
Cluster Editing. In the example, the weight of all existing and missing edges
is 1. Initially, the vertex v is reducible. Then, Rule CE1 inserts the missing edge
in N [v]. Subsequently, Rule CE2 deletes the edge between u and w, since it is
more costly to make w adjacent to all vertices of N [v] than to delete this edge.

Reduction Rule CE3
If there is a reducible vertex v to which Rules CE1 and CE2 do not
apply, then merge N [v] into a single vertex v′. For each vertex u ∈
V \N [v] set ω({u, v′}) :=∑x∈N [v] ω({u, x}).

As long as the instance contains a reducible vertex, the reduction rules will
either modify an edge or merge a vertex. If there are no more reducible vertices,
then the last trivial step of the kernelization algorithm is to remove all isolated
vertices from the instance. Afterwards, the instance has at most 2k vertices. The
intuition behind this size bound is the following. Every edge has weight at least
one, so a solution contains at most k edges. Since each edge has two endpoints,
the modifications can affect at most 2k vertices. Now if in a cluster every vertex
is affected, then the size of the cluster is at least two times the number of edge
modifications within the cluster plus the number of edge modifications between
this cluster and other clusters. If there is a vertex v in the cluster that is not
affected by the solution, then the same bound on the cluster size holds, in this
case because v is not reducible. Summing these size bounds over all clusters, we
obtain a sum of edges in which each solution edge appears at most twice. This
gives the size bound of 2k vertices.

2.3 Limits and Extensions of Kernelization
The two example problems Vertex Cover and Cluster Editing are especially
amenable to kernelization since they admit polynomial-size problem kernels. That
is, the size bound for the kernel is a polynomial function in the parameter k.
While all fixed-parameter tractable problems admit a problem kernelization, it
is not the case that all fixed-parameter tractable problems admit polynomial
kernels [54, 95]. It is beyond the scope of this paper to introduce the proof
techniques for showing nonexistence of polynomial problem kernels. We will
give, however, an example of a biologically motivated graph problem that does
not admit a polynomial problem kernel and describe one way of circumventing
this hardness result.

2-Club
Input: An undirected graph G = (V,E) and a nonnegative integer k.
Task: Find a set S ⊆ V of at least k vertices such that the subgraph
induced by S has diameter at most two.

The NP-hard 2-Club problem attempts to identify large cohesive subgroups of
an input graph. The idea behind the formulation is to relax the overly restrictive

9

Figure 4: A graph with a 2-club of size six (marked black).

definition of the Clique problem which only accepts solutions that are complete
graphs or, equivalently, that have diameter one. The 2-Club problem finds
applications in the detection of protein interaction complexes [116]; an instance
of 2-Club with a maximum-cardinality solution is shown in Figure 4. As we
will see, 2-Club is fixed-parameter tractable with respect to the parameter
solution size k. It does not, however, admit a polynomial problem kernel for this
parameter [120] (see Note 3 for a brief discussion).

In spite of this hardness result, one can still perform a useful parameterized
data reduction for 2-Club. The idea is to reduce the problem to many problem
kernels instead of just one. This approach is called Turing kernelization. In the
case of 2-Club, the Turing kernelization consists of two simple parts. First, one
looks for a trivial solution using the following observation: for every vertex v in
a graph, its closed neighborhood N [v] has diameter two.

Reduction Rule 2-C
If there is a vertex v with at least k − 1 neighbors, then return N [v].

After this rule has been applied, we have either obtained a solution or the
maximum degree of the graph is at most k − 2. Now, the Turing kernelization
uses only one further observation: To find a largest 2-club it is sufficient to
examine for each vertex v of the input graph G the subgraph of G that contains
only the vertices which have distance at most two to v. We can now use the fact
that the maximum degree is bounded: every vertex v has at most k−2 neighbors
and each of these has at most k − 3 further neighbors. Thus, 2-Club can
be solved by independently solving n small instances with O(k2) vertices each.
Formally, this means that 2-Club admits a Turing kernelization with O(k2)
vertices.

2.4 Applications and Implementations
Solving Vertex Cover is relevant in many bioinformatics-related scenarios
such as analysis of gene expression data [45] and the computation of multiple
sequence alignments [41]. Besides solving instances of Vertex Cover, another
application of Vertex Cover kernelizations is to search maximum-cardinality
cliques (that is, maximum-size complete subgraphs) in a graph. Here, use is
made of the fact that an n-vertex graph G has a clique of size (n− k) if and only
if its complement graph, that is, the graph that contains exactly the edges not
contained in G, has a size-k vertex cover. The best known kernel for Vertex
Cover (up to minor improvements) has 2k vertices [109]. Abu-Khzam et al. [1]
studied various kernelization methods for Vertex Cover and their practical
performance on biological networks with respect to running time and resulting
kernel size. Experimental results for the computation of large cliques via Vertex
Cover are given, for example, by Abu-Khzam et al. [3].

10

Several kernelization approaches including the one presented in Section 2.2.2
have been implemented for Cluster Editing [23, 77]. The Turing kernelization
for 2-Club was implemented and experimentally evaluated; it turned out to
be a crucial ingredient for obtaining an efficient algorithm for this problem [78].
Another biologically relevant clustering problem where kernelizations have been
successfully implemented is the Clique Cover problem. Here, the task is to
cover all edges of a graph using at most k cliques (these may overlap). Using
data reduction, Gramm et al. [67] solved even large instances with 1 000 vertices
and k ≈ 6 000 as long as they are sparse (m ≈ 7 000).

3 Depth-Bounded Search Trees
Once data reductions as discussed in the previous section have been applied to a
problem instance, we are left with the “really hard” problem kernel to be solved.
A standard way to explore the huge search space of a computationally hard
problem is to perform a systematic exhaustive search. This can be organized in
a tree-like fashion, which is the subject of this section.

3.1 Basic Concepts
Search tree algorithms—also known as backtracking algorithms, branching algo-
rithms, or splitting algorithms—certainly are no new idea and have extensively
been used in the design of exact algorithms (e.g., see [46, 61, 123]). The main
contribution of parameterized algorithmics to search tree algorithms is the
consideration of search trees whose depth is constrained by a function in the
parameter. Combined with insights on how to find useful—and possibly non-
obvious—parameters, this can lead to search trees that are much smaller than
those of naive brute-force searches. For example, a very naive search tree ap-
proach for solving Vertex Cover is to just take one vertex and branch into
two cases: either this vertex is in the vertex cover or not. For an n-vertex graph,
this leads to a search tree of size O(2n). As we outline in this section, we can do
much better than that and obtain a search tree whose depth is upper-bounded
by k, giving a size bound of O(2k). Extending what we discuss here, even better
search trees of size O(1.28k) are possible [42]. Since usually k � n, this can
draw the problem into the zone of feasibility even for large graphs.

Besides depth-bounding, parameterized algorithmics provides additional
means to provably improve the speed of search tree exploration, particularly by
interleaving this exploration with kernelizations, that is, applying data reduction
to partially solved instances during the exploration.

3.2 Case Studies
Starting with our running example Vertex Cover, this section introduces the
concept of depth-bounded search trees by three case studies.

3.2.1 Vertex Cover Revisited

For many search tree algorithms, the basic idea is to find a small subset of the
input instance in polynomial time such that at least one element of this subset
must be part of an optimal solution to the problem. In the case of Vertex

11

. . .

initial k

k − 1

k − 2

.k − 3

Figure 5: Simple search tree for finding a vertex cover of size at most k in a
given graph. The size of the tree is O(2k).

Cover, the most simple such subset is any set of two adjacent vertices. By
definition of the problem, one of these two vertices has to be part of a solution, or
the respective edge would not be covered. Thus, a simple search-tree algorithm to
solve Vertex Cover on a graph G = (V,E) can proceed by picking an arbitrary
edge e = {v, w} and recursively searching for a vertex cover of size k − 1 both
in G[V \ {v}] and G[V \ {w}], that is, in the graphs obtained by removing either
v and its incident edges or w and its incident edges. In this way, the algorithm
branches into two subcases knowing one of them must lead to a solution of size
at most k (provided that it exists).

As shown in Figure 5, the recursive calls of the simple Vertex Cover
algorithm can be visualized as a tree structure. Because the depth of the
recursion is upper-bounded by the parameter value and we always branch into
two subcases, the number of cases that are considered by this tree—its size, so
to say—is O(2k). Independent of the size of the input instance, it only depends
on the value of the parameter k.

The currently “best” search trees for Vertex Cover have worst-case size
O(1.28k) [42] and are mainly achieved by elaborate case distinctions. These
algorithms consist of several branching rules; for example, the degrees of the
endpoints of an edge determine which of the branching rules is applied. However,
for practical applications it is always concrete implementation and testing that
has to decide whether the administrative overhead caused by distinguishing more
and more cases pays off. A simpler algorithm with slightly worse search tree size
bounds may be preferable.

3.2.2 A Search Tree Algorithm for Cluster Editing

For Vertex Cover, we have found a depth-bounded search tree by observing
that at least one endpoint of any given edge must be part of the cover. A
somewhat similar approach can be used to derive a depth-bounded search tree
for Cluster Editing.

Recall that the aim for Cluster Editing is to modify a graph into a cluster
graph, that is, a vertex-disjoint union of cliques, by modifying edges whose weight
sums up to at most k. Similar to Vertex Cover, a search tree for Cluster

12

u v w

2

Delete {u, v} Merge u and v

u v

2

w x w

2

Figure 6: The merge branching for Cluster Editing. In the example instance,
all edges and missing edges have unit weight, except {v, w} which has weight 2. In
one branch, the edge {u, v} is deleted and k is reduced by 1. In the other branch,
u and v are merged and the edge weights are adjusted. For example, edge {x,w}
obtains weight 1 since the missing edge {u,w} had weight 1. Accordingly, k is
decreased by 1. All missing edges between x and other vertices have weight 2.

Editing can be obtained by noting that the desired graph of vertex-disjoint
cliques forbids a certain structure: If two vertices in a cluster graph are adjacent,
then their neighborhoods must be the same. Hence, whenever we encounter two
vertices u and v in the input graph G that are adjacent and where one vertex,
say v, has a neighbor w that is not adjacent to u, we are compelled to do one of
three things: Either remove the edge {u, v}, or add the edge {u,w}, or remove
the edge {v, w}. Note that each such modification incurs a cost of at least one.
Therefore, exhaustively branching into three cases, each time decreasing k by
one, we obtain a search tree of size O(3k) to solve Cluster Editing. Using
computer-aided algorithm design, this idea can be improved to obtain, for the
unit-weight case, a search tree of size O(1.92k) [65]. The current-best theoretical
running time is, however, achieved by exploiting the fact that edge weights make
it possible to consider the merging operation in a search tree algorithm. The
observation is that in the presence of a conflict as described above, one may
either delete the edge {u, v} or, otherwise, u and v are in the same cluster of the
final cluster graph. Thus, one may merge u and v and adjust the edge weights
accordingly. The main trick is that when performing the merging, this still
causes some cost: The edge {v, w} must be deleted or the edge {u,w} must be
added. After merging u and v into a new vertex x one may thus “remember” that
the new edge {x,w} will incur a cost irrespective of whether this edge is deleted
or kept by a solution. With a more refined branching strategy, this idea leads to
a search tree of size O(1.82k) for the general case [22] and of size O(1.62k) for
the unit-weight case [20].

3.2.3 The Closest String Problem

The Closest String problem is also known as Consensus String.

Closest String
Input: A set of k length-` strings s1, . . . , sk and a nonnegative integer d.
Task: Find a consensus string s that satisfies dH(s, si) ≤ d for all
i = 1, . . . , k.

13

ATCTA AGAA T
ATCTACAG AA
ATCTACAGAA T
ATCTA AGA AT
ATCTA AGAA T

ATCTACAGAAAT

TAGATGTCTTTA

T G
T C
G

T G
T G

...GGTGAG

...GGTGGA

...GGCGAG

...GGCGAG

...GGCAAG

TGAATGC...
GGATTGT...
GGAATGC...
GGAATGC...
GGAATGC...

closest string:

primer candidate:

Figure 7: Illustration to show how DNA primer design can be achieved by solving
Closest String instances on length-` windows of aligned DNA sequences. The
primer candidate is not the computed consensus string but its nucleotide-wise
complement.

Here, dH(s, si) denotes the Hamming distance between two strings s and si,
that is, the number of positions where s and si differ. Note that there are at
least two immediately obvious parameterizations of this problem. The first is
given by choosing the “distance parameter” d and the second is given by the
number of input strings k. Both parameters are reasonably small in various
applications; we refer to Gramm et al. [70] for more details. Here, we focus on
the parameter d.

Closest String appears for example in primer design, where we try to
find a small DNA sequence called primer that binds to a set of (longer) target
DNA sequences as a starting point for replication of these sequences. How well
the primer binds to a sequence is mostly determined by the number of positions
in that sequence that hybridize to it. While often done by hand, Stojanovic
et al. [125] proposed a computational approach for finding a well-binding primer
of length `. First, the target sequences are aligned, that is, as many matching
positions within the sequences as possible are grouped into columns. Then, a
“sliding window” of length ` is moved over this alignment, giving a Closest
String problem for each window position. Figure 7 illustrates this (see [64] for
details).

In the remainder of this case study, we sketch a fixed-parameter search tree
algorithm for Closest String due to Gramm et al. [70], the parameter being
the distance d. Unlike for Vertex Cover and Cluster Editing, the central
challenge lies in even finding a depth-bounded search tree, which is not obvious
at a first glance. Once found, however, the derivation of the upper bound for
the search tree size is straightforward. The underlying algorithm is very simple
to implement.

The main idea behind the algorithm is to maintain a candidate string ŝ
for the center string and compare it to the strings s1, . . . , sk. If ŝ differs from
some si in more than d positions, then we know that ŝ needs to be modified in
at least one of these positions to match the character that si has there. Consider
the following observation:

Observation 1. Let d be a nonnegative integer. If two strings si and sj have a
Hamming distance greater than 2d, then there is no string that has a Hamming

14

distance of at most d to both of si and sj.

This means that si is allowed to differ from ŝ in at most 2d positions. Hence,
among any d+ 1 of those positions where si differs from ŝ, at least one must
be modified to match si. This can be used to obtain a search tree that solves
Closest String.

We start with a string from {s1, . . . , sk} as the candidate string ŝ, knowing
that a center string can differ from it in at most d positions. If ŝ already is a
valid center string, we are done. Otherwise, there exists a string si that differs
from ŝ in more than d positions, but less than 2d. Choosing any d+ 1 of these
positions, we branch into (d+ 1) subcases, each subcase modifying a position
in ŝ to match si. This position cannot be changed anymore further down in the
search tree (otherwise, it would not have made sense to make it match si at that
position). Hence, the depth of the search tree is upper-bounded by d, for if we
were to go deeper down in the tree, then ŝ would differ in more than d positions
from the original string we started with. Thus, Closest String can be solved
by exploring a search tree of size O((d+ 1)d) [70]. Combining data reduction
with this search tree, we arrive at the following.

Theorem 1. Center String can be solved in O(k · `+ k · d · (d+ 1)d) time.

It might seem as if this result is purely of theoretical interest—after all,
the term (d+ 1)d becomes prohibitively large already for d = 15. Two things,
however, should be noted in this respect: First, for one of the main applications
of Closest String, primer design, d is very small (often less than 4). Second,
empirical analysis reveals that when the algorithm is applied to real-world and
random instances, it often beats the proven upper bound by far, solving many
real-world instances in less than a second. The algorithm is also faster than a
simple integer linear programming formulation of Closest String when the
input consists of many strings and ` is small [70].

Unfortunately, many variants of Closest String—roughly speaking, these
deal with finding a matching substring and distinguish between strings to which
the center is supposed to be close and to which it should be distant—are known
to be intractable for many standard parameters [57, 68, 104].

3.3 Applications and Implementations
In combination with data reduction, the use of depth-bounded search trees
has proven itself quite useful in practice, for example allowing to find vertex
covers of more than ten thousand vertices in some dense graphs of biological
origin [3]. It should also be noted that search trees trivially allow for a parallel
implementation: when branching into subcases, each process in a parallel setting
can further explore one of these branches with no additional communication
required. Experimental results for Vertex Cover show linear speedups even
for thousands of cores [2].

The merge-based search tree algorithm for Cluster Editing can solve many
instances arising in the analysis of protein similarity data [22]; it is part of a
software package [132]. A fixed-parameter search tree algorithm was also used to
solve instances of the Minimum Common String Partition problem [35]. This
NP-hard problem is motivated by applications in comparative genomics; the fixed-
parameter algorithm was able to solve the problem on some bacterial genomes.

15

The parameters exploited by the algorithm are the number of breakpoints
and the maximum gene copy number in the genomes. Fixed-parameter search
tree algorithms have also been applied for solving the Maximum Agreement
Forest problem which arises in the comparison of phylogenetic trees [130]; the
fixed-parameter algorithm outperformed two previous approaches for Maximum
Agreement Forest, one using a formulation as integer linear program and
another one using a formulation as satisfiability problem. Another example is the
search for k-plexes in graphs, which can be used for example to model functional
modules in protein interaction networks. By combining search trees with data
reduction, it is often possible to outperform previously-used methods [108].

Besides in parameterized algorithmics, search tree algorithms are studied
extensively in the area of artificial intelligence and heuristic state space search.
There, the key to speedups are admissible heuristic evaluation functions which
quickly give a lower bound on the distance to the goal. The reason that admissible
heuristics are rarely considered by the parameterized algorithmics community in
their works (see [69] for a counterexample) is that they typically cannot improve
the asymptotic running time. Still, the speedups obtained in practice can be
quite pronounced, as demonstrated for Vertex Cover [58].

As with kernelizations, algorithmic developments outside the fixed-parameter
setting can make use of the insights that have been gained in the development of
depth-bounded search trees in a fixed-parameter setting. One example for this
is the Minimum Quartet Inconsistency problem arising in the construction
of evolutionary trees. Here, an algorithm that uses depth-bounded search trees
was developed by Gramm & Niedermeier [69]. Their insight was used by Wu
et al. [134] to develop a faster (non-parameterized) algorithm for this problem.

In conclusion, depth-bounded search trees with clever branching rules are
certainly one of the first approaches to try when solving fixed-parameter tractable
problems in practice.

4 Dynamic Programming
Dynamic programming is one of the most useful algorithm design techniques
in bioinformatics; it also plays an important role in developing fixed-parameter
algorithms. Since dynamic programming is a classic algorithm design technique
covered in many standard textbooks [123], we keep the presentation of “fixed-
parameter dynamic programming” short.

4.1 Basic Concepts
The general idea is to recursively break down the problem into possibly over-
lapping subproblems whose optimal solution allows to find an overall optimal
solution. The solutions to subproblems are stored in a table, avoiding recalcula-
tion. A classic example is sequence alignment of two strings, for instance using
the Needleman–Wunsch algorithm [19]. The dynamic programming technique,
however, is not restricted to polynomial-time solvable problems.

The running time of dynamic programming depends mainly on the table size,
so the main trick in obtaining fixed-parameter dynamic programming algorithms
is to bound the size of the table by a function of the parameter times a polynomial
in the input size. Two generic methods for this are tree decompositions and

16

color-coding, described in Sections 5 and 6, respectively. In many cases, however,
the table size is obviously bounded in the parameter and thus no additional
techniques are necessary to obtain a fixed-parameter algorithm.

4.2 Case Study
One application of dynamic programming is in the interpretation of mass spec-
trometry data, which contains mass peaks for a sample molecule and for fragments
thereof [27, 28]. The method builds a graph where a vertex corresponds to a
possible molecular formula of a peak, and an edge corresponds to a hypothetical
fragmentation step. Edges are weighted by the likeliness of the corresponding
fragmentation step. The goal is then to calculate a maximum scoring subtree of
this graph. In this tree, we must use only one of the molecular formulas of a
peak. This is achieved by giving each vertex a corresponding color and asking
for a colorful subtree.

Maximum Colorful Subtree
Input: A directed graph D = (V,A) with a vertex coloring c : V → C
and arc weights w : A→ Q+.
Task: Find a subtree of G that uses each color at most once and has
maximum total arc weight.

This NP-hard problem can be solved by dynamic programming [27, 28, 121]
by building a table W (v, S) for v ∈ V and S ⊆ C. An entry W (v, S) holds the
maximum score of a subtree with root v whose vertex set has exactly the colors
of S. The table is filled out with the following recurrence:

W (v, S) = max

maxu∈V :c(u)∈S\{c(v)}W (u, S \ {c(v)}) + w(v, u)

max(S1,S2):S1∩S2={c(v)}
S1∪S2=S

W (v, S1) +W (v, S2)
(1)

with initial condition W (v, {c(v)}) = 0 and the weight of nonexistent arcs set
to −∞. The first line extends a tree by introducing v as new root and adding
the arc (v, u), and the second line merges two trees that have the same root but
are otherwise disjoint.

The tableW has n ·2k entries where k is the number of different vertex colors,
and filling it out can be done in O(3kkm) time. Thus, Maximum Colorful
Subtree is fixed-parameter tractable with respect to the parameter k. In the
application, the parameter is the number of peaks in the spectrum which is
usually small.

4.3 Applications and Implementations
The algorithm described in Section 4.2 was found to be fast and accurate in
determining glycan structure [27]. There are several further applications of
dynamic programming over exponentially-sized tables. In phylogenetics, for
example, the task of reconciling a binary gene tree with a nonbinary species
trees can be solved via a dynamic programming algorithm whose table size
is exponential only in the maximum outdegree of the species tree [126]. The
implementation solves instances based on cyanobacterial gene trees on average
in less than one second. In these instances, the parameter value ranges from 2
to 6.

17

Another application of dynamic programming is in a variant of haplotyping
(see also Section 7.2) which deals with the analysis of genomic fragments. Using
dynamic programming, solutions to the weighted minimum error correction
formulation can be found in a running time of O(2k ·m). Here, k is the maximum
coverage of any genome position by the input fragments and m is the number of
SNPs per sequencing read [117]. The algorithm scales up to k ≈ 20.

5 Tree Decompositions of Graphs
Many NP-hard graph problems become computationally feasible when they are
restricted to cycle-free graphs, that is, trees or collections of trees (forests). Trees,
while potentially simplifying computation, form a very limited class of graphs
that seldom suffices as a model for real-life applications. Hence, as a compromise
between general graphs and trees, one might want to look at “tree-like” graphs.
This tree-likeness can be formalized by the concept of tree decompositions. In
this section, we survey some important aspects of tree decompositions and their
algorithmic use with respect to computational biology and FPT. Surveys on this
topic are given by Berger et al. [11] and Bodlaender & Koster [31].

5.1 Basic Concepts
There is a very helpful and intuitive characterization of tree decompositions in
terms of a robber–cop game in a graph [29]: A robber stands on a graph vertex
and, at any time, he can run at arbitrary speed to any other vertex of the graph
as long as there is a path connecting both. The only restriction is that he is not
permitted to run through a cop. There can be several cops and, at any time,
each of them may either stand on a graph vertex or be in a helicopter (that is,
she is above the game board and can move anywhere without being restricted
by graph edges). The cops want to land a helicopter on the vertex occupied
by the robber. The robber can see a helicopter approaching its landing vertex
and he may run to a new vertex before the helicopter actually lands. Thus, the
cops want to occupy all vertices adjacent to the robber’s vertex, making him
unable to move, and to then land one more remaining helicopter on the robber’s
vertex itself to catch him. The treewidth of the graph is the minimum number
of cops needed to catch a robber minus one (observe that if the graph is a tree,
two cops suffice and trees hence have a treewidth of one) and a corresponding
tree decomposition is a tree structure that provides the cops with a scheme to
catch the robber. Intuitively, the tree decomposition indicates “bottlenecks”
(separators) in the graph and thus reveals an underlying scaffold that can be
exploited algorithmically.

Formally, tree decompositions and treewidth center around the following
somewhat technical definition; Figure 8 shows a graph together with an optimal
tree decomposition of width two.

Definition 3. Let G = (V,E) be an undirected graph. A tree decomposition of
G is a pair 〈{Xi | i ∈ I}, T 〉 where each Xi is a subset of V , called a bag, and
T is a tree with the elements of I as nodes. The following three properties must
hold:

1.
⋃

i∈I Xi = V ;

18

a

b

c

d

e

f

g

h i

a

d
b

c

d
b

e

d
b

e

d
h

i
h

e

g
h

e

g
f

Figure 8: A graph together with a tree decomposition of width 2. Observe
that—as demanded by the consistency property—each graph vertex induces a
subtree in the decomposition tree.

2. for every edge {u, v} ∈ E, there is an i ∈ I such that {u, v} ⊆ Xi; and

3. for all i, j, k ∈ I, if j lies on the path between i and k in T then Xi ∩Xk ⊆
Xj.

The width of 〈{Xi | i ∈ I}, T 〉 equals max{|Xi| | i ∈ I} − 1. The treewidth of G
is the minimum k such that G has a tree decomposition of width k.

The third condition of the definition is often called consistency property. It
is important in dynamic programming, the main algorithmic tool when solving
problems on graphs of bounded treewidth. An equivalent formulation of this
property is to demand that for any graph vertex v, all bags containing v form a
connected subtree.

For trees, the bags of a corresponding tree decomposition are simply the
two-element vertex sets formed by the edges of the tree. In the definition, the
subtraction of 1 thus ensures that trees have a treewidth of 1. In contrast, a clique
of n vertices has treewidth n− 1. The corresponding tree decomposition trivially
consists of one bag containing all graph vertices; in fact, no tree decomposition
with smaller width is attainable since it is known that every complete subgraph
of a graph G is completely “contained” in a bag of G’s tree decomposition.

Tree decompositions of graphs are connected to another central concept in
algorithmic graph theory: graph separators are vertex sets whose removal from
the graph separates the graph into two or more connected components. Each
bag of a tree decomposition forms a separator of the corresponding graph.

Given a graph, determining its treewidth is an NP-hard problem itself.
However, several tools and heuristics exist that construct tree decompositions [30–
32], and for some graphs that appear in practice, computing a tree decomposition
is easy. Here, we concentrate on the algorithmic use of tree decompositions,
assuming that they are provided to us.

5.2 Case Study
Typically, tree decomposition-based algorithms have two stages:

1. Find a tree decomposition of bounded width for the input graph.

2. Solve the problem by dynamic programming on the tree decomposition,
starting from the leaves.

19

Intuitively speaking, a decomposition tree provides us with a scaffold-structure
that allows for efficient and consistent processing through the graph. By design,
this scaffold leads to optimal solutions even when the utilized tree decompositions
are not optimal; however, the algorithm will run slower and consume more
memory in that case.

To exemplify dynamic programming on tree decompositions, we make use of
our running example Vertex Cover and sketch a fixed-parameter dynamic
programming algorithm for Vertex Cover with respect to the parameter
treewidth.

Theorem 2. For a graph G with a given width-ω tree decomposition 〈{Xi | i ∈
I}, T 〉, an optimal vertex cover can be computed in O(2ω · ω · |I|) time.

The basic idea of the algorithm is to examine for each bag Xi all of the at
most 2|Xi| possibilities to obtain a vertex cover for the subgraph G[Xi]. This
information is stored in tables Ai, i ∈ I. Adjacent tables are updated in a
bottom-up process starting at the leaves of the decomposition tree. Each bag of
the tree decomposition thus has a table associated with it. During this updating
process it is guaranteed that the “local” solutions for each subgraph associated
with a bag of the tree decomposition are combined into a “globally optimal”
solution for the overall graph G. (We omit several technical details here; these
can be found in [110, Chapter 10].) The following points of Definition 3 guarantee
the validity of this approach.

1. The first condition in Definition 3, that is, V =
⋃

i∈I Xi, makes sure that
every graph vertex is taken into account during the computation.

2. The second condition in Definition 3, that is, ∀e ∈ E ∃i ∈ I : e ∈ Xi,
makes sure that all edges can be treated and thus will be covered.

3. The third condition in Definition 3 guarantees the consistency of the
dynamic programming, since information concerning a particular vertex v
is only propagated between neighboring bags that both contain v.

While the running time of the dynamic programming part can often be
improved over a naive approach, there is evidence that known algorithms for
some basic combinatorial problems are essentially optimal [102].

One thing to keep in mind for a practical application is that storing dynamic
programming tables requires memory space that grows exponentially in the
treewidth. Hence, even for “small” treewidths, say, between 10 and 20, the
computer program may run out of memory and break down. Some techniques
for limiting memory use have been proposed [12, 56, 71].

5.3 Applications and Implementations
Tree decomposition based algorithms are a valuable alternative whenever the
underlying graphs have small treewidth. As a rule of thumb, the typical border
of practical feasibility lies somewhere below a treewidth of 20 for the underlying
graph, although with advantageous data and careful implementation higher
values are possible (e. g. [71]). Successful implementations for solving Vertex
Cover with tree decomposition approaches have been reported [4, 12].

20

A practical application of tree decompositions is found in protein structure
prediction, namely the prediction of backbone structures and side-chain predic-
tion. These two problems can be modeled as a graph labeling problem, where the
resulting graphs have a very small treewidth in practice, allowing the problems
to be solved efficiently [11].

Besides taking an input graph, computing a tree decomposition for it, and
hoping that the resulting tree decomposition has small treewidth, there have also
been cases where a problem is modeled as a graph problem such that it can be
proven that the resulting graphs have a tree decomposition with small treewidth
that can efficiently be found. As an example, Song et al. [124] used a so-called
conformational graph to specify the consensus sequence-structure of an RNA
family. They proved that the treewidth of this graph is basically determined by
the structural elements that appear in the RNA. More precisely, they showed
that if there is a bounded number of crossing stems, say k, in a pseudoknot
structure, then the resulting graph has treewidth (2 + k). Since the number of
crossing stems is usually small, this yields a fast algorithm for searching RNA
secondary structures (see also [135]).

Other biological applications include peptide sequencing and spectral align-
ment [101], molecule bond multiplicity inference [24], charge group partitioning
for biomolecular simulations [39], and NMR interpretation [99]. The idea of
exploiting the treewidth of an auxiliary structure describing interdependencies
of the input also has attracted much attention in Artificial Intelligence (AI)
applications [63, 86].

Besides dynamic programming, a very powerful method to obtain fixed-
parameter results for the parameter treewidth is to cast the problem as an
expression in monadic second-order logic (MSO) [98]. For example for Vertex
Cover, the expression is

vc(U) := ∀x, y ∈ V : ¬({x, y} ∈ E) ∨ x ∈ U ∨ y ∈ U.

Since the worst-case running time obtained from this formulation is extremely
bad, this approach was thought to be impractical [110, Chapter 10]. However,
recently a solver was presented that indeed just requires the user to provide the
MSO expression [88, 97, 98]. If the problem at hand admits a formulation in
MSO (as most problems that are fixed-parameter tractable for treewidth do),
this provides a quick way to evaluate the feasibility of the treewidth approach
for the data at hand, with the option to get a quicker algorithm by designing a
customized dynamic programming.

Besides treewidth, a number of alternative concepts have been developed to
compare the structure of a graph to a tree, including branch-width, rank-width,
and hypertree-width [79, 98].

6 Color-Coding
The color-coding technique due to Alon et al. [6] is a general method for finding
small patterns in graphs. In its simplest form, color-coding can solve the
Minimum Weight Path problem, which asks for the cheapest path of length k
in a graph. This has been successfully employed with protein–protein interaction
networks to find signaling pathways [85, 121] and to evaluate pathway similarity
queries [122].

21

6.1 Basic Concepts
A naive approach to discover a small structure of k vertices within a graph
of n vertices would be to combinatorially try all of the roughly nk possibilities
of selecting k out of n vertices and then testing the selection for the desired
structural property. This approach quickly leads to a combinatorial explosion,
making it infeasible even for rather small input graphs of a few hundred vertices.
The central idea of color-coding is to randomly color each vertex of a graph with
one of k colors and to hope that all vertices in the subgraph searched for obtain
different colors (that is, the vertex set becomes colorful).

When the structure that is searched for becomes colorful, the task of finding it
can be solved by dynamic programming in a running time where the exponential
part solely depends on k, the size of the substructure searched for. Of course,
given the randomness of the initial coloring, most of the time the target structure
will actually not be colorful. Therefore, we have to repeat the process of random
coloring and searching (called a trial) many times until the target structure is
colorful at least once with sufficiently high probability. As we will show, the
number of trials also depends only on k (albeit exponentially). Consequently
this algorithm has a fixed-parameter running time. Thus it is much faster than
the naive approach which needs O(nk) time.

6.2 Case Study
Formally stated, the problem we consider is the following:

Minimum Weight Path
Input: An undirected graph G with edge weights w : E → Q+ and a
nonnegative integer k.
Task: Find a simple length-k path in G that minimizes the sum over
its edge weights.

This problem is well-known to be NP-hard [62, ND29]. What makes the
problem hard is the requirement of simple paths, that is, paths where no vertex
may occur more than once (otherwise, it is easily solved by traversing a minimum-
weight edge k − 1 times).

Given a fixed coloring of vertices, finding a minimum-weight path that
is colorful can be accomplished by dynamic programming: Assume that for
some i < k we have computed a value W (v, S) for every vertex v ∈ V and every
cardinality-i subset S of vertex colors such that W (v, S) denotes the minimum
weight of a path that uses each color in S exactly once and ends in v. Clearly,
the resulting path is simple because no color is used more than once. We can
now use this to compute the values W (v, S) for all cardinality-(i+ 1) subsets S
and vertices v ∈ V , because any colorful length-(i + 1) path that ends in a
vertex v ∈ V must be composed of a colorful length-i path that does not use the
color of v and ends in a neighbor of v. More precisely, we let

W (v, S) = min
e={u,v}∈E

(
W (u, S \ {color(v)}) + w(e)

)
. (2)

See Figure 9 for an example.
It is straightforward to verify that on an m-edge graph the dynamic program-

ming takes O(2km) time. Whenever the minimum-weight length-k path P in

22

v1

v3

v2

v4

2

3

1

4

2

W (v2, { , , }) = 5 W (v3, { , , }) = 3 W (v1, { , , , }) =
min{W (v2, { , , }) + 2,

W (v3, { , , }) + 3} = 6

v1

2

3

v2

4

1

3

v3

v1v4 v1

v3

v2

v4

2

3

1

4

22

Figure 9: Example for solving Minimum Weight Path using the color-coding
technique. Here, using (2) a new table entry (right) is calculated using two
already known entries (left and middle).

the input graph is colored with k different colors (that is, its vertex is colorful),
then the algorithm finds P . The problem, of course, is that the coloring of the
input graph is random and hence many coloring trials have to be performed to
ensure that the minimum-weight path is found with a high probability. More
precisely, the probability of any length-k path (including the one with minimum
weight) being colorful in a single trial is

Pc =
k!

kk
>
√
2πke−k (3)

because there are kk ways to arbitrarily color k vertices with k colors and k!
ways to color them such that no color is used more than once. Using t trials, a
path of length k is found with probability 1− (1−Pc)

t. Therefore, to ensure that
a colorful path is found with a probability greater than 1− ε (for any 0 < ε ≤ 1),
at least

t(ε) =

⌈
ln ε

ln(1− Pc)

⌉
= − ln ε ·O(ek) (4)

trials are needed. This bounds the overall running time by 2O(k) · nO(1). While
the result is only correct with a certain probability, we can can specify any
desired error probability, say 0.1%, noting that even very low error probabilities
do not incur excessive extra running time costs.

Note that the number of colors chosen poses a trade-off: While using more
than k colors increases the chance of a target structure becoming colorful—and
thus decreases the number of trials needed to achieve a given error probability—it
increases the running time and memory requirements of the dynamic program-
ming step. As a theoretical analysis points out, using 1.3k colors instead of just k
improves the worst-case running time of the color-coding algorithm. Moreover,
in practice it is often beneficial to increase the number of colors even further [85].

6.3 Applications and Implementations
Protein interaction networks represent proteins by vertices and mutual protein–
protein interaction probabilities by weighted edges. They are a valuable source of
information for understanding the functional organization of the proteome. Scott
et al. [121] demonstrated that high-scoring simple paths in the network constitute
plausible candidates for linear signal transduction pathways, simple meaning that
no vertex occurs more than once and high-scoring meaning that the product of

23

edge weights is maximized. To match the above definition of Minimum Weight
Path, one works with the weight w(e) := − log p(e) of an edge e with interaction
probability p(e) between e’s endpoints. Then minimizing the sum of the weights
is equivalent to maximizing the product of the probabilities.

The currently most efficient implementation based on color-coding [85] is
capable of finding optimal paths of length up to 20 in seconds within a yeast
protein interaction network containing about 4 500 vertices.

A particularly appealing aspect of color-coding is that it can be easily adapted
to many practically relevant variations of the problem formulation:

• The set of vertices where a path can start and end can be restricted (such
as to force it to start in a membrane protein and end in a transcription
factor [121]).

• Not only the minimum-weight path can be computed but rather a collection
of low-weight paths (typically, one demands that these paths must differ in
a certain amount of vertices to ensure that they are diverse and not small
modifications of the global minimum-weight path) [85].

• More generally, pathway queries to a network, that is, the task of finding
a pathway in a network that is as similar as possible to a query pathway,
can be handled with color-coding [122].

Several other works use color-coding for querying in protein interaction
networks. For example, the queries can be trees, allowing for identification
of non-exact (homeomorphic) matches [53]. Another application is counting
non-induced occurrences of subgraph topologies in the form of trees and bounded
treewidth subgraphs [5].

A further use of color-coding is to solve the Graph Motif problem. In
a biological application of Graph Motif, the query is a set of proteins, and
the task is to find a matching set of proteins that are sequence-similar to the
query proteins and span a connected region of the network. Bruckner et al. [34]
and Betzler et al. [13] provided implementations based on color-coding; they
differ in the way insertions and deletions are handled, and are thus not directly
comparable.

Further, color-coding has also found applications in string problems: for
example, Bonizzoni et al. [33] used it to solve a variant of Longest Common
Subsequence that is motivated by a sequence comparison problem. However,
to the best of our knowledge no string algorithm using color-coding has been
implemented yet.

Related techniques. We mention some techniques that use ideas similar to
color-coding. To the best of our knowledge, with one exception none of them
has been implemented so far.

Two variants use only two colors to separate the pattern from surround-
ing vertices (random separation) [37] or to divide the graph into two parts
for recursion (divide-and-color) [89]. Random separation can be used to find
small subgraphs with desired properties in sparse graphs. For these problems
enumerating connected subgraphs and using color-coding [92] sometimes gives
faster algorithms. A further extension known as chromatic coding was used to

24

obtain (theoretically) fast algorithms for the Dense Triplet Inconsistency
problem motivated from phylogenetics [73].

Algebraic techniques [93, 94] can improve on the worst-case running time of
many color-coding approaches; for example, the currently strongest worst-case
bound for Graph Motif is obtained this way [17]. This approach, however, is
not as flexible as color-coding, for example with respect to the handling of large
weights. Experiments for the unweighted version of Minimum-Weight Path
on random graphs have shown that the approach is feasible for a path length of
16 and 8000 vertices [18].

7 Iterative Compression
The main idea of iterative compression is induction: we construct a slightly
smaller instance, solve it recursively, and then make use of the solution to solve
the actual instance. While induction is a classic algorithmic approach, iterative
compression first appeared in a work by Reed et al. in 2004 (see also a 2009
survey [75]). Although it is perhaps not quite as generally applicable as data
reduction or search trees, it appears to be useful for solving a wide range of
problems and has led to significant breakthroughs in showing fixed-parameter
tractability results. Iterative compression is typically used for “minimum ob-
struction deletion” problems: given a set of items, omit the minimum number of
items such that the remaining items exhibit some “nice” structure. Thus, it can
sometimes model parsimonious error correction. Vertex Cover is one example
fitting this scheme, and it can be solved with iterative compression [118].

7.1 Basic Concepts
The central concept of iterative compression is to employ a so-called compression
routine.

Definition 4. A compression routine is an algorithm that, given a problem
instance and a solution of size k, either calculates a smaller solution or proves
that the given solution is of minimum size.

With a compression routine, we can find an optimal solution for an instance by
recursively solving a smaller instance, using the solution for the smaller instance
to find a possibly suboptimal solution for the actual instance, and then using
the compression routine to find an optimal solution. For “minimum obstruction
deletion” problems, the only nontrivial step is the compression routine.

The main strength of iterative compression is that it allows us to see a
problem from a different angle, since the compression routine does not only
have the problem instance as input, but also a solution, which carries valuable
structural information on the input. Also, the compression routine does not need
to find an optimal solution at once, but only any better solution. Therefore, the
design of a compression routine can often be simpler than designing a complete
algorithm.

Algorithmically, the compression routine is the “complex” step in iterative
compression in two regards: First, while the mode of use of the compression
routine is usually straightforward, finding the compression routine itself often
is not. Second, if the compression routine is a fixed-parameter algorithm with
respect to the parameter k, then so is the whole algorithm.

25

B

B

A

A

B

A

Figure 10: A Vertex Bipartization instance (left), and an optimal solution
(right): when deleting two fragments (dashed), the remaining fragments can
be allocated to the two chromosome copies (A and B) such that no conflicting
fragments get the same assignment.

7.2 Case Studies
The showcase for iterative compression is the Vertex Bipartization problem,
also known as Odd Cycle Cover.

Vertex Bipartization
Input: An undirected graph G = (V,E) and a nonnegative integer k.
Task: Find a set D ⊆ V of at most k vertices such that G[V \ D] is
bipartite.

This problem appears as Minimum Fragment Removal in the context of
SNP haplotyping [113]. When analyzing DNA fragments obtained by shotgun
sequencing, it is initially unknown which of the two chromosome copies of a
diploid organism a fragment belongs to. We can, however, determine for some
pairs of fragments that they cannot belong to the same chromosome copy since
they contain conflicting information at some SNP locus. Using this information,
it is straightforward to reconstruct the chromosome assignment. We can model
this as a graph problem, where the fragments are the vertices and a conflict is
represented as an edge. The task is then to color the vertices with two colors such
that no vertices with the same color are adjacent. The problem gets difficult in
the presence of errors such as parasite DNA fragments which randomly conflict
with other fragments. In this scenario, we ask for the least number of fragments
to remove such that we can get a consistent fragment assignment (see Figure 10).
Using the number of fragments k to be removed as a parameter is a natural
approach, since the result is only meaningful for small k anyway.

Iterative compression provided the first fixed-parameter algorithm for Vertex
Bipartization with this parameter [119]. We sketch how to apply this to
finding an optimal solution (a removal set) for a Vertex Bipartization
instance (G = (V,E), k). Choose an arbitrary vertex v and let G′ be G with
v deleted. Recursively find an optimal removal set R′ for G′ (this recursion
terminates after n = |V | steps, where we can yield the empty removal set for
the empty graph). Clearly, R′ ∪ {v} is a removal set for G, although it might
not be optimal (it can be too large by one). Now using the compression routine
for G and R′ ∪ {v}, we can find an optimal solution for G′.

The compression routine itself works by examining a number of vertex cuts
in an auxiliary graph (that is, a set of vertices whose deletion makes the graph
disconnected), a task which can be accomplished in polynomial time by maximum
flow techniques. We refer to the literature for details [81, 96, 119]. The running
time of the complete algorithm is O(3k ·mn) [81].

26

7.3 Applications and Implementations
The iterative compression algorithm for Vertex Bipartization has been
employed for a number of biological applications. An implementation, improved
by heuristics, can solve all Minimum Fragment Removal problems from
a testbed based on human genome data within minutes, whereas established
methods are only able to solve about half of the instances within reasonable
time [81]. The Unordered Maximum Tree Orientation, which models
inference of signal transmissions in protein–protein interaction networks based on
cause–effect pairs, can be reduced to Graph Bipartization [25]. Also, ordering
and orienting contigs produced during genome assembly can be reduced to
Graph Bipartization, and this is implemented in the SCARPA scaffolder [52].
Recently, an algorithm with a better worst-case bound of 2.32k · nO(1) based on
linear programming was presented [103], which seems like a promising alternative
to iterative compression for Vertex Bipartization.

Edge Bipartization, the edge deletion version of Vertex Bipartization,
can also be solved by iterative compression [74]. Enhanced with data reduction
rules and generalized to the Signed Graph Balancing problem, this algorithm
was used to analyze gene regulatory networks [82]. It can solve many networks
to optimality, but fails for the largest ones [82]. The Tanglegram Layout
problem is about drawing two phylogenetic trees on the same species set in
order to facilitate analysis; it can be reduced to Edge Bipartization [26]. The
implementation by Hüffner et al. [82] can find exact solutions for all practically
relevant Tanglegram Layout instances within seconds [26]. Finally, computing
the minimum number of recombination events for general pedigrees with two
sites for all members can also be reduced to Edge Bipartization [50].

Another prominent problem amenable to iterative compression is Feedback
Vertex Set, which also has applications for genetic linkage analysis [10]. While
initial algorithms based on iterative compression [48, 74] had prohibitive worst-
case running times, the currently fastest known approach runs in 3.619k · nO(1)

time for finding a feedback vertex set of k vertices [90]. However, these algorithms
have not been implemented yet.

The Directed Feedback Vertex Set problem was also shown to be
fixed-parameter tractable by iterative compression [43], solving a long-standing
open question. However, the worst-case running time bound is much worse
than for the previously mentioned problems. Still, an experimental evaluation
on random graphs [59], employing also data reduction, showed encouraging
results for very small parameter values. Directed Feedback Vertex Set has
applications in pairwise genome alignment under the duplication-loss model [51]
and in the comparison of gene orders [72]. For an application in reconstructing
reticulation networks in particular, the authors mention that the parameter
could be expected to be very small [100].

Finally, the Cluster Vertex Deletion problem, the “vertex deletion
variant” of Cluster Editing, aims to cluster objects by removing objects
that do not fit in the cluster structure. It can also be solved by a fixed-
parameter algorithm with respect to the number of removed vertices using
iterative compression [83].

27

8 A Roadmap towards Efficient Implementations
Here we try to give some general recommendations on how to go about applying
parameterized algorithmics to NP-hard computational problems in practice.

Identification of parameters. The first task is to identify fruitful parameters.
As detailed in Section 1.2, it is useful to consider several “structural” parameters,
possibly also deduced from a data-driven analysis of the input instances. The
usefulness of the parameter clearly depends on whether it is small in the input
instances. For graph instances, a tool such as Graphana (http://fpt.akt.tu-berlin.
de/graphana/) that calculates a wide range of graph parameters can be helpful.
At this point, it is also useful to determine whether the problem is fixed-parameter
tractable or W[1]-hard. While a hardness result encourages to look for another
parameter or combined parameters, bear in mind that certain techniques such
as data reduction can still be effective in practice even without a performance
guarantee.

Implementation of brute-force search. The next thing to do is to im-
plement a brute-force search that is as simple as possible. There are several
reasons for this: First, it gives some first impression on what solutions look like
(for example, can we use their size as parameter?). Second, a simple starting
implementation is invaluable in shaking out bugs from later, more sophisticated
implementations, in particular if results for random instances are systematically
compared. Possibly the best way to get a simple brute-force result is to use an
integer linear program (ILP). These sometimes need only a few lines when using
a modeling language, but are often surprisingly effective. The second method of
choice is a simple search tree (Section 3).

Implementation of data reduction. Data reduction is valuable in combina-
tion with any other algorithmic technique such as approximation, heuristics, or
fixed-parameter algorithms. In some cases it can even completely solve instances
without further effort; it can be considered as essential for the treatment of
NP-hard problems. Thus it should always be the first nontrivial technique to
be developed and implemented. When combined with even a naive brute-force
approach, it can often already solve instances of notable size. For large instances,
an efficient implementation of the data reduction rules is necessary. A rule
of thumb is to aim for linear running time for most of the implemented data
reduction rules and to apply linear-time data reduction rules first [14].

Tuned search trees. After this, the easiest speedups typically come from
a more carefully tuned search tree algorithm. Case distinction can help to
improve provable running time bounds, although it has often been reported that
a too complicated branching actually leads to a slowdown. Heuristic branching
priorities can help, as well as admissible heuristic evaluation functions [58].
Further, interleaving with data reduction can lead to a speedup [112].

Non-traditional techniques. When search trees are not applicable or too
slow, less clear instructions can be given. The best thing to do is to look at
other fixed-parameter algorithms and techniques for inspiration: are we looking

28

http://fpt.akt.tu-berlin.de/graphana/
http://fpt.akt.tu-berlin.de/graphana/

for a small pattern in the input? Possibly color-coding (Section 6) helps. Are
we looking for minimum modifications to obtain a nice combinatorial structure?
Possibly iterative compression (Section 7) is applicable. In this way, possibly
using some of the less common approaches of fixed-parameter algorithms, one
might still come up with a fixed-parameter algorithm.

Here, one should be wary of exponential-space algorithms as these can often
fill the memory within seconds and therefore become unusable in practice. In
contrast, one should not be too afraid of bad upper bounds for fixed-parameter
algorithms—the analysis is worst-case and often much too pessimistic.

Heuristic speedups. Some of the largest speedups experienced in experiments
come from techniques that can be considered heuristic in the sense that they do
not improve worst-case time bounds or the kernel size. The general idea of most
heuristics is to recognize early that some branches or subcases cannot lead to
an optimal solution and to skip those. Their potential effectiveness, even when
no performance guarantees can be given, should always be kept in mind when
implementing algorithms.

Furthermore, most algorithms will have numerous degrees of freedom con-
cerning their actual implementation, execution order, and the value of some
thresholds for example concerning the fraction of search tree nodes to which
data reduction should be applied. There are tools for algorithm configuration
that can exploit this freedom and may yield magnitudes of speedup [80].

9 Conclusion
We surveyed several techniques for developing efficient fixed-parameter algo-
rithms for computationally hard (biological) problems. Since many of these
problems appear to “carry small parameters,” we firmly believe that there will
continue to be a strong interaction between parameterized complexity analy-
sis and algorithmic bioinformatics. To make this as fruitful as possible, it is
necessary to analyze real-world data in search for “hidden structure” which
can be captured by suitable parameterizations. A subsequent parameterized
complexity analysis can then determine which of these parameterizations yield
field-parameter algorithms. This data-driven line of algorithmic research is
still underdeveloped and should receive increased attention in future research.
Moreover, in order to obtain the practically most useful algorithms, it may often
be good to combine fixed-parameter algorithms (particularly, data reduction
and kernelization) with general-purpose tools for solving computationally hard
problems, including SAT solving and integer linear programming. This certainly
will need a lot of experimentation going far beyond purely theoretical algorithm
design.

10 Notes
1. To show that a problem is unlikely to be fixed-parameter tractable, the

concept of W[1]-hardness was developed. It is widely assumed that a W[1]-
hard problem cannot have a fixed-parameter algorithm (W[t]-hardness,
t ≥ 2 has the same implication). For example, the Clique problem to find

29

a clique (complete subgraph) in an undirected graph is W[1]-hard with
respect to the parameter “number of vertices in the clique”. To show that a
problem is W[1]-hard, a parameterized reduction from a known W[1]-hard
problem can be used (see e.,g. [44, 55]).

2. There exist suitable data reduction rules when it is of interest to enumerate
all minimal vertex covers of a given graph. For example, Damaschke [47]
suggests the notion of a full kernel that contains all minimal solutions in a
compressed form and thereby allows enumeration of them.

3. One technique to show that a polynomial kernel is unlikely is called
composition [54, 95]. A composition is an algorithm that combines the
inputs of many instances of a problem into one “equivalent” instance. For
2-Club, the composition is to take the disjoint union of the input graphs
of the instances: Any solution to such a combined instance has to live
completely inside one of its connected components, which are completely
contained in one of the original input instances. Thus, the combined
instance has a solution if and only if at least one of the input instances
has one. The existence of a composition and a polynomial kernelization
leads to an implausible complexity-theoretic collapse. Thus, it is widely
assumed that there is no polynomial problem kernel for problems with a
composition [54, 95].

Acknowledgments. This is a completely revised, updated, and significantly
expanded version of the previous book chapter “Developing Fixed-Parameter
Algorithms to Solve Combinatorially Explosive Biological Problems” authored
by Hüffner, Niedermeier, and Wernicke.

Falk Hüffner was supported by the Deutsche Forschungsgemeinschaft (DFG),
project ALEPH (HU 2139/1).

References
[1] Abu-Khzam, F. N., Collins, R. L., Fellows, M. R., Langston, M. A., Suters,
W. H., & Symons, C. T. (2004). Kernelization algorithms for the vertex
cover problem: Theory and experiments. In Proc. 6th Workshop on Algorithm
Engineering and Experiments (ALENEX ’04), (pp. 62–69). SIAM.

[2] Abu-Khzam, F. N., Daudjee, K., Mouawad, A. E., & Nishimura, N. (2013). An
easy-to-use scalable framework for parallel recursive backtracking. Technical
Report arXiv:1312.7626, arXiv.

[3] Abu-Khzam, F. N., Langston, M. A., Shanbhag, P., & Symons, C. T. (2006).
Scalable parallel algorithms for FPT problems. Algorithmica, 45 (3), 269–284.

[4] Alber, J., Dorn, F., & Niedermeier, R. (2005). Empirical evaluation of a tree
decomposition based algorithm for vertex cover on planar graphs. Discrete
Applied Mathematics, 145 (2), 219–231.

[5] Alon, N., Dao, P., Hajirasouliha, I., Hormozdiari, F., & Sahinalp, S. C.
(2008). Biomolecular network motif counting and discovery by color coding.
Bioinformatics, 24 (13), i241–i249.

30

[6] Alon, N., Yuster, R., & Zwick, U. (1995). Color-coding. Journal of the ACM,
42 (4), 844–856.

[7] Althaus, E., Klau, G. W., Kohlbacher, O., Lenhof, H., & Reinert, K. (2009).
Integer linear programming in computational biology. In Efficient Algorithms,
Essays Dedicated to Kurt Mehlhorn on the Occasion of His 60th Birthday,
volume 5760 of LNCS, (pp. 199–218). Springer.

[8] Atias, N. & Sharan, R. (2012). Comparative analysis of protein networks:
hard problems, practical solutions. Communications of the ACM, 55 (5), 88–97.

[9] Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela,
A., & Protasi, M. (1999). Complexity and Approximation: Combinatorial
Optimization Problems and Their Approximability Properties. Springer.

[10] Becker, A., Geiger, D., & Schäffer, A. (1998). Automatic selection of loop
breakers for genetic linkage analysis. Human Genetics, 48 (1), 49–60.

[11] Berger, B., Singht, R., & Xu, J. (2008). Graph algorithms for biological
systems analysis. In Proc. 19th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA ’08), (pp. 142–151). SIAM.

[12] Betzler, N., Niedermeier, R., & Uhlmann, J. (2006). Tree decompositions
of graphs: Saving memory in dynamic programming. Discrete Optimization,
3 (3), 220–229.

[13] Betzler, N., van Bevern, R., Fellows, M. R., Komusiewicz, C., & Nieder-
meier, R. (2011). Parameterized algorithmics for finding connected motifs in
biological networks. IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 8 (5), 1296–1308.

[14] van Bevern, R. (2014). Fixed-Parameter Linear-Time Algorithms for NP-
hard Graph and Hypergraph Problems Arising in Industrial Applications. PhD
thesis, TU Berlin.

[15] Biere, A., Heule, M., van Maaren, H., & Walsh, T. (Eds.). (2009). Handbook
of Satisfiability. IOS Press.

[16] Bixby, R. E. (2002). Solving real-world linear programs: A decade and more
of progress. Operations Research, 50, 3–15.

[17] Björklund, A., Kaski, P., & Kowalik, Ł. (2013). Probably optimal graph
motifs. In Proc. 30th International Symposium on Theoretical Aspects of
Computer Science (STACS ’13), volume 20 of LIPIcs, (pp. 20–31). Schloss
Dagstuhl – Leibniz-Zentrum für Informatik.

[18] Björklund, A., Kaski, P., & Kowalik, Ł. (2014). Fast witness extraction using
a decision oracle. In Proc. 22th Annual European Symposium on Algorithms
(ESA ’14), volume 8737 of LNCS, (pp. 149–160). Springer.

[19] Böckenhauer, H.-J. & Bongartz, D. (2007). Algorithmic Aspects of Bioin-
formatics. Springer.

[20] Böcker, S. (2012). A golden ratio parameterized algorithm for cluster editing.
Journal of Discrete Algorithms, 16, 79–89.

31

[21] Böcker, S. & Baumbach, J. (2013). Cluster editing. In Proc. 9th Conference
on Computability in Europe (CiE ’13), volume 7921 of LNCS, (pp. 33–44).
Springer.

[22] Böcker, S., Briesemeister, S., Bui, Q. B. A., & Truß, A. (2009). Going
weighted: Parameterized algorithms for cluster editing. Theoretical Computer
Science, 410 (52), 5467–5480.

[23] Böcker, S., Briesemeister, S., & Klau, G. W. (2011). Exact algorithms for
cluster editing: Evaluation and experiments. Algorithmica, 60 (2), 316–334.

[24] Böcker, S., Bui, Q. B. A., & Truß, A. (2011). Computing bond orders in
molecule graphs. Theoretical Computer Science, 412 (12–14), 1184–1195.

[25] Böcker, S. & Damaschke, P. (2012). A note on the parameterized complexity
of unordered maximum tree orientation. Discrete Applied Mathematics, 160 (10-
11), 1634–1638.

[26] Böcker, S., Hüffner, F., Truss, A., & Wahlström, M. (2009). A faster fixed-
parameter approach to drawing binary tanglegrams. In Proc. 4th International
Workshop on Parameterized and Exact Computation (IWPEC ’09), volume
5917 of LNCS, (pp. 38–49). Springer.

[27] Böcker, S., Kehr, B., & Rasche, F. (2011). Determination of glycan structure
from tandem mass spectra. IEEE/ACM Transactions on Computational
Biology and Bioinformatics, 8 (4), 976–986.

[28] Böcker, S. & Rasche, F. (2008). Towards de novo identification of metabolites
by analyzing tandem mass spectra. Bioinformatics, 24 (16), 49–55.

[29] Bodlaender, H. L. (1998). A partial k-arboretum of graphs with bounded
treewidth. Theoretical Computer Science, 209, 1–45.

[30] Bodlaender, H. L., Fomin, F. V., Koster, A. M. C. A., Kratsch, D., &
Thilikos, D. M. (2012). On exact algorithms for treewidth. ACM Transactions
on Algorithms, 9 (1), 12:1–12:23.

[31] Bodlaender, H. L. & Koster, A. M. C. A. (2008). Combinatorial optimization
on graphs of bounded treewidth. The Computer Journal, 51 (3), 255–269.

[32] Bodlaender, H. L. & Koster, A. M. C. A. (2010). Treewidth computations
I: Upper bounds. Information and Computation, 208 (3), 259–275.

[33] Bonizzoni, P., Vedova, G. D., Dondi, R., & Pirola, Y. (2010). Variants of
constrained longest common subsequence. Information Processing Letters,
110 (20), 877–881.

[34] Bruckner, S., Hüffner, F., Karp, R. M., Shamir, R., & Sharan, R. (2010).
Topology-free querying of protein interaction networks. Journal of Computa-
tional Biology, 17 (3), 237–252.

[35] Bulteau, L., Fertin, G., Komusiewicz, C., & Rusu, I. (2013). A fixed-
parameter algorithm for minimum common string partition with few duplica-
tions. In Proc. 13th International Workshop on Algorithms in Bioinformatics
(WABI ’13), volume 8126 of LNCS, (pp. 244–258). Springer.

32

[36] Bulteau, L., Hüffner, F., Komusiewicz, C., & Niedermeier, R. (2014). Mul-
tivariate algorithmics for NP-hard string problems. Bulletin of the EATCS,
114, 31–73.

[37] Cai, L., Chan, S. M., & Chan, S. O. (2006). Random separation: A new
method for solving fixed-cardinality optimization problems. In Proc. 2nd In-
ternational Workshop on Parameterized and Exact Computation (IWPEC ’06),
volume 4169 of LNCS, (pp. 239–250). Springer.

[38] Cai, L., Chen, J., Downey, R. G., & Fellows, M. R. (1997). Advice classes of
parameterized tractability. Annals of Pure and Applied Logic, 84 (1), 119–138.

[39] Canzar, S., El-Kebir, M., Pool, R., Elbassioni, K. M., Mark, A. E., Geerke,
D. P., Stougie, L., & Klau, G. W. (2013). Charge group partitioning in
biomolecular simulation. Journal of Computational Biology, 20 (3), 188–198.

[40] Cao, Y. & Chen, J. (2012). Cluster editing: Kernelization based on edge
cuts. Algorithmica, 64 (1), 152–169.

[41] Cheetham, J., Dehne, F. K. H. A., Rau-Chaplin, A., Stege, U., & Taillon,
P. J. (2003). Solving large FPT problems on coarse-grained parallel machines.
Journal of Computer and System Sciences, 67 (4), 691–706.

[42] Chen, J., Kanj, I. A., & Xia, G. (2010). Improved upper bounds for vertex
cover. Theoretical Computer Science, 411 (40–42), 3736–3756.

[43] Chen, J., Liu, Y., Lu, S., O’Sullivan, B., & Razgon, I. (2008). A fixed-
parameter algorithm for the directed feedback vertex set problem. Journal of
the ACM, 55 (5).

[44] Chen, J. & Meng, J. (2008). On parameterized intractability: Hardness and
completeness. The Computer Journal, 51 (1), 39–59.

[45] Chesler, E. J., Lu, L., Shou, S., Qu, Y., Gu, J., Wang, J., Hsu, H. C.,
Mountz, J. D., Baldwin, N. E., Langston, M. A., Threadgill, D. W., Manly,
K. F., & Williams, R. W. (2005). Complex trait analysis of gene expression
uncovers polygenic and pleiotropic networks that modulate nervous system
function. Nature Genetics, 37, 233–242.

[46] Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Intro-
duction to Algorithms (3rd ed.). MIT Press.

[47] Damaschke, P. (2006). Parameterized enumeration, transversals, and im-
perfect phylogeny reconstruction. Theoretical Computer Science, 351 (3),
337–350.

[48] Dehne, F. K. H. A., Fellows, M. R., Langston, M. A., Rosamond, F. A., &
Stevens, K. (2007). An O(2O(k)n3) FPT algorithm for the undirected feedback
vertex set problem. Theory of Computing Systems, 41 (3), 479–492.

[49] Diestel, R. (2010). Graph Theory (4th ed.)., volume 173 of Graduate Texts
in Mathematics. Springer.

[50] Doan, D. D. & Evans, P. A. (2011). An FPT haplotyping algorithm on
pedigrees with a small number of sites. Algorithms for Molecular Biology, 6, 8.

33

[51] Dondi, R. & El-Mabrouk, N. (2013). Aligning and labeling genomes under
the duplication-loss model. In Proc. 9th Conference on Computability in
Europe (CiE ’13), volume 7921 of LNCS, (pp. 97–107). Springer.

[52] Donmez, N. & Brudno, M. (2013). SCARPA: scaffolding reads with practical
algorithms. Bioinformatics, 29 (4), 428–434.

[53] Dost, B., Shlomi, T., Gupta, N., Ruppin, E., Bafna, V., & Sharan, R.
(2008). QNet: A tool for querying protein interaction networks. Journal of
Computational Biology, 15 (7), 913–925.

[54] Downey, R. G. & Fellows, M. R. (2013). Fundamentals of Parameterized
Complexity. Texts in Computer Science. Springer.

[55] Downey, R. G. & Thilikos, D. M. (2011). Confronting intractability via
parameters. Computer Science Review, 5 (4), 279–317.

[56] Fafianie, S., Bodlaender, H. L., & Nederlof, J. (2015). Speeding up dy-
namic programming with representative sets: An experimental evaluation
of algorithms for steiner tree on tree decompositions. Algorithmica, 71 (3),
636–660.

[57] Fellows, M. R., Gramm, J., & Niedermeier, R. (2006). On the parameterized
intractability of motif search problems. Combinatorica, 26 (2), 141–167.

[58] Felner, A., Korf, R. E., & Hanan, S. (2004). Additive pattern database
heuristics. Journal of Artificial Intelligence Research, 21, 1–39.

[59] Fleischer, R., Wu, X., & Yuan, L. (2009). Experimental study of FPT
algorithms for the directed feedback vertex set problem. In Proc. 17th Annual
European Symposium on Algorithms (ESA ’09), volume 5757 of LNCS, (pp.
611–622). Springer.

[60] Flum, J. & Grohe, M. (2006). Parameterized Complexity Theory. Springer.

[61] Fomin, F. V. & Kratsch, D. (2010). Exact Exponential Algorithms. Texts
in Theoretical Computer Science. Springer.

[62] Garey, M. R. & Johnson, D. S. (1979). Computers and Intractability: A
Guide to the Theory of NP-Completeness. Freeman.

[63] Gottlob, G., Pichler, R., & Wei, F. (2010). Bounded treewidth as a key to
tractability of knowledge representation and reasoning. Artificial Intelligence,
174 (1), 105–132.

[64] Gramm, J. (2003). Fixed-Parameter Algorithms for the Consensus Analysis
of Genomic Sequences. PhD thesis, WSI für Informatik, Universität Tübingen,
Germany.

[65] Gramm, J., Guo, J., Hüffner, F., & Niedermeier, R. (2004). Automated
generation of search tree algorithms for hard graph modification problems.
Algorithmica, 39, 321–347.

[66] Gramm, J., Guo, J., Hüffner, F., & Niedermeier, R. (2005). Graph-modeled
data clustering: Exact algorithms for clique generation. Theory of Computing
Systems, 38 (4), 373–392.

34

[67] Gramm, J., Guo, J., Hüffner, F., & Niedermeier, R. (2008). Data reduc-
tion and exact algorithms for clique cover. ACM Journal of Experimental
Algorithmics, 13, 2.2:1–2.2:15.

[68] Gramm, J., Guo, J., & Niedermeier, R. (2006). Parameterized intractability
of distinguishing substring selection. Theory of Computing Systems, 39 (4),
545–560.

[69] Gramm, J. & Niedermeier, R. (2003). A fixed-parameter algorithm for
minimum quartet inconsistency. Journal of Computer and System Sciences,
67 (4), 723–741.

[70] Gramm, J., Niedermeier, R., & Rossmanith, P. (2003). Fixed-parameter
algorithms for closest string and related problems. Algorithmica, 37 (1), 25–42.

[71] Groër, C., Sullivan, B. D., & Weerapurage, D. (2012). INDDGO: Integrated
network decomposition & dynamic programming for graph optimization. Tech-
nical Report ORNL/TM-2012/176, Oak Ridge National Laboratory.

[72] Guillemot, S. (2011). Parameterized complexity and approximability of the
longest compatible sequence problem. Discrete Optimization, 8 (1), 50–60.

[73] Guillemot, S. & Mnich, M. (2013). Kernel and fast algorithm for dense
triplet inconsistency. Theoretical Computer Science, 494, 134–143.

[74] Guo, J., Gramm, J., Hüffner, F., Niedermeier, R., & Wernicke, S. (2006).
Compression-based fixed-parameter algorithms for feedback vertex set and
edge bipartization. Journal of Computer and System Sciences, 72 (8), 1386–
1396.

[75] Guo, J., Moser, H., & Niedermeier, R. (2009). Iterative compression for
exactly solving NP-hard minimization problems. In Algorithmics of Large and
Complex Networks, volume 5515 of LNCS, (pp. 65–80). Springer.

[76] Guo, J. & Niedermeier, R. (2007). Invitation to data reduction and problem
kernelization. ACM SIGACT News, 38 (1), 31–45.

[77] Hartung, S. & Hoos, H. H. (2015). Programming by optimisation meets
parameterised algorithmics: A case study for cluster editing. In Proc. 9th
Learning and Intelligent OptimizatioN Conference (LION’15), volume 8994 of
LNCS, (pp. 43–58). Springer.

[78] Hartung, S., Komusiewicz, C., & Nichterlein, A. (2015). Parameterized
algorithmics and computational experiments for finding 2-clubs. Journal of
Graph Algorithms and Applications, 19 (1), 155–190.

[79] Hlinený, P., Oum, S., Seese, D., & Gottlob, G. (2008). Width parameters
beyond tree-width and their applications. The Computer Journal, 51 (3),
326–362.

[80] Hoos, H. H. (2012). Programming by optimization. Communications of the
ACM, 55 (2), 70–80.

[81] Hüffner, F. (2009). Algorithm engineering for optimal graph bipartization.
Journal of Graph Algorithms and Applications, 13 (2), 77–98.

35

[82] Hüffner, F., Betzler, N., & Niedermeier, R. (2010). Separator-based data
reduction for signed graph balancing. Journal of Combinatorial Optimization,
20 (4), 335–360.

[83] Hüffner, F., Komusiewicz, C., Moser, H., & Niedermeier, R. (2010). Fixed-
parameter algorithms for cluster vertex deletion. Theory of Computing Systems,
47 (1), 196–217.

[84] Hüffner, F., Niedermeier, R., & Wernicke, S. (2008). Techniques for practical
fixed-parameter algorithms. The Computer Journal, 51 (1), 7–25.

[85] Hüffner, F., Wernicke, S., & Zichner, T. (2008). Algorithm engineering for
color-coding with applications to signaling pathway detection. Algorithmica,
52 (2), 114–132.

[86] Kask, K., Dechter, R., Larrosa, J., & Dechter, A. (2005). Unifying tree
decompositions for reasoning in graphical models. Artificial Intelligence,
166 (1-2), 165–193.

[87] Kleinberg, J. M. & Tardos, É. (2006). Algorithm Design. Addison-Wesley.

[88] Kneis, J., Langer, A., & Rossmanith, P. (2011). Courcelle’s theorem—a
game-theoretic approach. Discrete Optimization, 8 (4), 568–594.

[89] Kneis, J., Mölle, D., Richter, S., & Rossmanith, P. (2006). Divide-and-
color. In Proc. 32nd International Workshop on Graph-Theoretic Concepts in
Computer Science (WG ’06), volume 4271 of LNCS, (pp. 58–67). Springer.

[90] Kociumaka, T. & Pilipczuk, M. (2014). Faster deterministic feedback vertex
set. Information Processing Letters, 114 (10), 556–560.

[91] Komusiewicz, C. & Niedermeier, R. (2012). New races in parameterized
algorithmics. In Proc. 37th International Symposium on Mathematical Foun-
dations of Computer Science (MFCS ’12), volume 7464 of LNCS, (pp. 19–30).
Springer.

[92] Komusiewicz, C. & Sorge, M. (2015). An algorithmic framework for fixed-
cardinality optimization in sparse graphs applied to dense subgraph problems.
Discrete Applied Mathematics. To appear.

[93] Koutis, I. (2008). Faster algebraic algorithms for path and packing prob-
lems. In Proc. 35th International Colloquium on Automata, Languages and
Programming (ICALP ’08), volume 5125 of LNCS, (pp. 575–586). Springer.

[94] Koutis, I. & Williams, R. (2009). Limits and applications of group algebras
for parameterized problems. In Proc. 36th International Colloquium on Au-
tomata, Languages and Programming (ICALP ’09), volume 5555 of LNCS,
(pp. 653–664). Springer.

[95] Kratsch, S. (2014). Recent developments in kernelization: A survey. Bulletin
of the EATCS, 113, 58–97.

[96] Krithika, R. & Narayanaswamy, N. S. (2013). Another disjoint compression
algorithm for odd cycle transversal. Information Processing Letters, 113 (22-
24), 849–851.

36

[97] Langer, A., Reidl, F., Rossmanith, P., & Sikdar, S. (2012). Evaluation
of an MSO-solver. In Proc. 14th Workshop on Algorithm Engineering and
Experiments (ALENEX ’12), (pp. 55–63). SIAM.

[98] Langer, A., Reidl, F., Rossmanith, P., & Sikdar, S. (2014). Practical
algorithms for MSO model-checking on tree-decomposable graphs. Computer
Science Review, 13-14, 39–74.

[99] Liberti, L., Lavor, C., & Mucherino, A. (2013). The discretizable molecular
distance geometry problem seems easier on proteins. In Distance Geometry:
Theory, Methods, and Applications (pp. 47–60). Springer.

[100] Linz, S., Semple, C., & Stadler, T. (2010). Analyzing and reconstructing
reticulation networks under timing constraints. Journal of Mathematical
Biology, 61 (5), 715–737.

[101] Liu, C., Song, Y., Yan, B., Xu, Y., & Cai, L. (2006). Fast de novo peptide
sequencing and spectral alignment via tree decomposition. In Proc. 11th
Pacific Symposium on Biocomputing (PSB ’06), (pp. 255–266).

[102] Lokshtanov, D., Marx, D., & Saurabh, S. (2011). Known algorithms on
graphs on bounded treewidth are probably optimal. In Proc. 22nd Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA ’11), (pp. 777–789).
SIAM.

[103] Lokshtanov, D., Narayanaswamy, N. S., Raman, V., Ramanujan, M. S., &
Saurabh, S. (2014). Faster parameterized algorithms using linear programming.
ACM Transactions on Algorithms, 11 (2), 15:1–15:31.

[104] Marx, D. (2008). Closest substring problems with small distances. SIAM
Journal on Computing, 38 (4), 1382–1410.

[105] Michalewicz, Z. & Fogel, D. B. (2004). How to Solve It: Modern Heuristics
(2nd ed.). Springer.

[106] Miranda, M., Lynce, I., & Manquinho, V. M. (2014). Inferring phylogenetic
trees using pseudo-boolean optimization. AI Communications, 27 (3), 229–243.

[107] Moore, C. & Mertens, S. (2011). The Nature of Computation. Oxford
University Press.

[108] Moser, H., Niedermeier, R., & Sorge, M. (2012). Exact combinatorial
algorithms and experiments for finding maximum k-plexes. Journal of Combi-
natorial Optimization, 24 (3), 347–373.

[109] Nemhauser, G. L. & Trotter, L. E. (1975). Vertex packings: Structural
properties and algorithms. Mathematical Programming, 8 (1), 232–248.

[110] Niedermeier, R. (2006). Invitation to Fixed-Parameter Algorithms. Oxford
University Press.

[111] Niedermeier, R. (2010). Reflections on multivariate algorithmics and prob-
lem parameterization. In Proc. 27th International Symposium on Theoretical
Aspects of Computer Science (STACS ’10), volume 5 of LIPIcs, (pp. 17–32).
Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

37

[112] Niedermeier, R. & Rossmanith, P. (2000). A general method to speed
up fixed-parameter-tractable algorithms. Information Processing Letters, 73,
125–129.

[113] Panconesi, A. & Sozio, M. (2004). Fast hare: A fast heuristic for single
individual SNP haplotype reconstruction. In Proc. 4th Workshop on Algorithms
in Bioinformatics (WABI ’04), volume 3240 of LNCS, (pp. 266–277). Springer.

[114] Papadimitriou, C. H. (1994). Computational Complexity. Addison-Wesley.

[115] Papadimitriou, C. H. (1997). NP-completeness: A retrospective. In
Proc. 24th International Colloquium on Automata, Languages and Program-
ming (ICALP ’97), volume 1256 of LNCS, (pp. 2–6). Springer.

[116] Pasupuleti, S. (2008). Detection of protein complexes in protein interaction
networks using n-Clubs. In Proc. 6th European Conference on Evolutionary
Computation, Machine Learning and Data Mining in Bioinformatics (Evo-
BIO ’06), volume 4973 of LNCS, (pp. 153–164). Springer.

[117] Patterson, M., Marschall, T., Pisanti, N., van Iersel, L., Stougie, L., Klau,
G. W., & Schönhuth, A. (2015). WhatsHap: Weighted haplotype assembly for
future-generation sequencing reads. Journal of Computational Biology, 22 (6),
498–509.

[118] Peiselt, T. (2007). An iterative compression algorithm for vertex cover.
Studienarbeit, Institut für Informatik, Friedrich-Schiller-Universität Jena.

[119] Reed, B., Smith, K., & Vetta, A. (2004). Finding odd cycle transversals.
Operations Research Letters, 32 (4), 299–301.

[120] Schäfer, A., Komusiewicz, C., Moser, H., & Niedermeier, R. (2012). Pa-
rameterized computational complexity of finding small-diameter subgraphs.
Optimization Letters, 6 (5), 883–891.

[121] Scott, J., Ideker, T., Karp, R. M., & Sharan, R. (2006). Efficient algorithms
for detecting signaling pathways in protein interaction networks. Journal of
Computational Biology, 13 (2), 133–144.

[122] Shlomi, T., Segal, D., Ruppin, E., & Sharan, R. (2006). QPath: a
method for querying pathways in a protein–protein interaction network. BMC
Bioinformatics, 7, 199.

[123] Skiena, S. S. (2008). The Algorithm Design Manual (2nd ed.). Springer.

[124] Song, Y., Liu, C., Malmberg, R. L., Pan, F., & Cai, L. (2005). Tree
decomposition based fast search of RNA structures including pseudoknots
in genomes. In Proc. 4th International IEEE Computer Society Computa-
tional Systems Bioinformatics Conference (CSB 2005), (pp. 223–234). IEEE
Computer Society.

[125] Stojanovic, N., Florea, L., Riemer, C., Gumucio, D., Slightom, J., Good-
man, M., Miller, W., & Hardison, R. (1999). Comparison of five methods for
finding conserved sequences in multiple alignments of gene regulatory regions.
Nucleic Acids Research, 27 (19), 3899–3910.

38

[126] Stolzer, M., Lai, H., Xu, M., Sathaye, D., Vernot, B., & Durand, D. (2012).
Inferring duplications, losses, transfers and incomplete lineage sorting with
nonbinary species trees. Bioinformatics, 28 (18), 409–415.

[127] Vardi, M. Y. (2014). Boolean satisfiability: theory and engineering. Com-
munications of the ACM, 57 (3), 5.

[128] Vazirani, V. V. (2001). Approximation Algorithms. Springer.

[129] West, D. B. (2000). Introduction to Graph Theory (2 ed.). Prentice Hall.

[130] Whidden, C., Beiko, R. G., & Zeh, N. (2010). Fast FPT algorithms for
computing rooted agreement forests: Theory and experiments. In Proc. 9th
International Symposium on Experimental Algorithms (SEA ’10), volume 6049
of LNCS, (pp. 141–153). Springer.

[131] Williamson, D. P. & Shmoys, D. B. (2011). The Design of Approximation
Algorithms. Cambridge University Press.

[132] Wittkop, T., Emig, D., Lange, S., Rahmann, S., Albrecht, M., Morris,
J. H., Böcker, S., Stoye, J., & Baumbach, J. (2010). Partitioning biological
data with transitivity clustering. Nature Methods, 7 (6), 419–420.

[133] Wittkop, T., Emig, D., Truss, A., Albrecht, M., Böcker, S., & Baumbach,
J. (2011). Comprehensive cluster analysis with transitivity clustering. Nature
Protocols, 6 (3), 285–295.

[134] Wu, G., You, J.-H., & Lin, G. (2005). A lookahead branch-and-bound
algorithm for the maximum quartet consistency problem. In Proc. 5th Work-
shop on Algorithms in Bioinformatics (WABI ’05), volume 3692 of LNCS, (pp.
65–76). Springer.

[135] Zhao, J., Malmberg, R. L., & Cai, L. (2008). Rapid ab initio prediction
of RNA pseudoknots via graph tree decomposition. Journal of Mathematical
Biology, 56 (1–2), 145–159.

39

	Introduction
	Computational Complexity Theory
	Parameterized Complexity
	Graph Theory

	Kernelization: Data Reduction With Guaranteed Effectiveness
	Basic Concepts
	Case Studies
	A Simple Kernelization for Vertex Cover
	A Kernelization for Cluster Editing

	Limits and Extensions of Kernelization
	Applications and Implementations

	Depth-Bounded Search Trees
	Basic Concepts
	Case Studies
	Vertex Cover Revisited
	A Search Tree Algorithm for Cluster Editing
	The Closest String Problem

	Applications and Implementations

	Dynamic Programming
	Basic Concepts
	Case Study
	Applications and Implementations

	Tree Decompositions of Graphs
	Basic Concepts
	Case Study
	Applications and Implementations

	Color-Coding
	Basic Concepts
	Case Study
	Applications and Implementations

	Iterative Compression
	Basic Concepts
	Case Studies
	Applications and Implementations

	A Roadmap towards Efficient Implementations
	Conclusion
	Notes

