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Abstract

Kernelization is a core tool of parameterized algorithmics for coping
with computationally intractable problems. A kernelization reduces in
polynomial time an input instance to an equivalent instance whose size is
bounded by a function only depending on some problem-specific parame-
ter k; this new instance is called problem kernel. Typically, problem kernels
are achieved by performing efficient data reduction rules. So far, there was
little systematic study in the literature concerning the mutual interaction
of data reduction rules, in particular whether data reduction rules for
a specific problem always lead to the same reduced instance, no matter
in which order the rules are applied. This corresponds to the concept
of confluence from the theory of rewriting systems. We argue that it is
valuable to study whether a kernelization is confluent, using the NP-hard
graph problems (Edge) Clique Cover and Partial Clique Cover as
running examples. We apply the concept of critical pair analysis from
graph transformation theory, supported by the AGG software tool. These
results support the main goal of our work, namely, to establish a fruit-
ful link between (parameterized) algorithmics and graph transformation
theory, two so far unrelated fields.

1 Introduction

Theoretical Computer Science is usually divided into algorithm-oriented research
and description-oriented research (as witnessed by the two volumes “Algorithms
and Complexity” and “Formal Methods and Semantics” of the Handbook of

∗An extended abstract of this paper appears in Proceedings of the 8th Conference on
Computability in Europe (CiE 2012), LNCS 7318, Springer. The present long version contains
additional details in Section 4 and all proofs.
†Supported by DFG project PABI (NI 369/7-2).
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Theoretical Computer Science [22]). Unfortunately, the corresponding research
communities typically work in two “parallel worlds” with relatively little inter-
action. In this work, we propose a new link between algorithmics and formal
methods that may lead to a fruitful “interdisciplinary” field of research. More
specifically, we develop a connection between efficient preprocessing of NP-hard
(graph) problems by kernelization [2, 15] and the theory of graph transforma-
tions [10, 30]: We employ the concept of confluence of rewriting systems to show
“uniqueness results” for problem kernels. This leads to the concept of confluent
data reduction rules, having a number of both theoretical and practical benefits
as discussed in the following.

1.1 Confluence in Kernelization

Data reduction, also known as polynomial-time preprocessing, is a classic ap-
proach for dealing with NP-hard combinatorial optimization problems (see [2, 15]
for surveys). The idea is to remove redundant parts of the input, thereby ob-
taining a hard “core” of the instance. Costly algorithms need then only be
applied to this core. Data reduction is thus useful in virtually any approach to
solving computationally hard problems, whether heuristic, approximative, or
exact. Formally, we consider only decision problems, where (data) reduction rules
replace in polynomial time a given problem instance I by an instance I ′ with
|I ′| < |I|. We say that the data reduction rule is correct when I is a yes-instance
iff I ′ is a yes-instance. An instance to which none of a given set of reduction
rules applies is called reduced with respect to these rules.

While they are a standard technique for practitioners, only fairly recently
have data reduction rules been the subject of wider theoretical analyses, using
the concept of a problem kernel [2, 15]. This notion comes from the field
of parameterized complexity [7, 11, 26], where the performance of algorithms
is analyzed not just in terms of the problem size n, but also in terms of a
parameter k, for example the solution size. A kernelization is a data reduction
that creates an equivalent instance whose size depends only on the parameter k,
and not on the original input size n anymore (see Section 2.1 for a more formal
definition).

Note that applying data reduction rules is nondeterministic in general and
thus may lead to different reduced instances. In fact, the result depends not
only on the order in which the rules are applied, but also on the occurrence
where each rule is applied to the current instance. Thus, we have two sources of
nondeterminism, which in general may lead to different results. A trivial way
to avoid different results is to forbid nondeterminism by fixing an execution
order of the rules and occurrences. This, however, may cause a smaller reduction
power since with a different execution order of the data reduction rules further
reductions might be possible. In this paper we do not restrict the nondeterminism
of rule applications, but we analyze confluence of the rule set to obtain unique
instances (see Section 1.2).

We call a terminating set of data reduction rules confluent if any order of
application of the rules yields a unique reduced instance, up to isomorphism.
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Confluence is a standard concept from graph transformation theory (see below).
There are a number of reasons why it seems useful to investigate whether data
reduction rules are confluent: If they are, then the rules are robust in a sense;
we obtain a unique starting point for further processing after the data reduction
has been performed. In an implementation of the rules, we can apply the rules
in any order without worrying about the result, and can thus optimize for the
speed of their application. If the rules are not confluent, this might indicate some
“slack” in the rules: some orders of application might lead to worse results, that
is, larger kernels. Investigating all this might lead to improved data reduction
rules. Moreover, insight on the interaction of data reduction rules can lead to
faster kernelizations.

Confluence was also exploited by Kneis et al. [20]. They present a set of
reduction rules for a graph with m edges and show that a particular order of
execution yields a tree decomposition of width m/5.769 +O(log n). Then, they
show that a different order of application yields a path decomposition. Thus, a
proof of confluence implies that any order of application of data reduction yields
a path decomposition of width m/5.769 +O(log n).

Finally, proving confluence is also a good way to check for possible conflicts
between data reduction rules, since all possible interactions need to be taken into
account. It might also give an incentive to create “minimal” kernelization rules
in order to make confluence proofs easier, which could give a sharper picture of
what exactly is needed to achieve a problem kernel.

1.2 Confluence of Graph Transformation Systems

The theory of graph grammars and graph transformation systems has been
started in the early 1970s [8] as a generalization of Chomsky grammars and term
rewriting systems, which are based on strings and trees, respectively. The main
idea is the rule-based modification of graphs. Graph transformations are most
suitable to model the operational semantics of visual languages and also to define
model transformations between different kinds of models. Several approaches for
graph transformations are known [30], including logical and algebraic approaches.
A graph transformation system consists of a set of graph rules. They are applied
in a non-deterministic way, leading to graph transformation steps G =⇒ H and
sequences G

∗
=⇒ H. A single rule consists of a left-hand side graph LHS , a

right-hand side graph RHS , and their intersection graph. A subgraph of the
input graph that is isomorphic to LHS of a rule is called match or occurrence of
the rule. To apply a rule, first a match has to be found. In a second step, the
corresponding graph without the intersection graph has to be deleted. The result
is a context graph, which is glued together with RHS at the vertices and edges
of the intersection graph. A graph transformation system is called confluent
if for each pair of graph transformation sequences G

∗
=⇒ G1, G

∗
=⇒ G2 with

the same domain, there is a graph G3 together with sequences G1
∗

=⇒ G3 and
G2

∗
=⇒ G3, as shown in Fig. 1 (a).
There are numerous applications in software engineering, concurrency, and

distributed systems, where confluence of graph transformations plays an impor-
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Figure 1: Confluence (a) and local confluence (b) for graph transformations

tant role [9]. Confluence together with termination, i. e., non-existence of infinite
transformation sequences, implies that any order of applying the rules as long
as possible yields a unique graph, up to isomorphism. Moreover, we obtain for
isomorphic input graphs isomorphic reduced graphs [10]. Altogether, this means
that in case of confluence and termination, the graph transformation system
has functional behavior. This property is especially important to obtain unique
normal forms for the operational semantics of rewriting systems.

In order to show confluence it is sufficient to show local confluence and
termination [18, 25]. Local confluence means confluence for the special case that
the given sequences from G to G1 and G2 are transformation steps G =⇒ G1

and G =⇒ G2, where in each step only one transformation rule is applied
(as indicated in Fig. 1 (b)). Data reduction rules for kernelization for graph
problems define graph transformation systems based on undirected graphs, such
that the general concepts of (local) confluence and termination are applicable.
An important technique to analyze local confluence, called critical pair analysis,
will be discussed below.

Structure of the paper. Basic notions about kernelization and critical pair
analysis are presented in Section 2. In Section 3, we examine a kernelization
(Rules 1 to 3) for Clique Cover from the literature [14, 16] and show that
it is confluent by a direct proof. This proof also yields a linear-time algorithm
to compute the kernel. We then demonstrate how confluence can be shown
alternatively via critical pair analysis (Section 3.3). This analysis is supported
by the software tool AGG [1], which allows automated detection of critical pairs.
Partial Clique Cover is introduced in Section 4 together with Rules 4 to 6
extending Rules 1 to 3. In Theorem 4, we show that Rules 4 to 6 yield a kernel
for Partial Clique Cover with 2k+c vertices, where c is the number of covered
edges in the given graph. In Section 4.2, we show confluence of Rules 4 to 6,
where the explicit proof is quite complex; again an alternative via critical pair
analysis is discussed (Section 4.3). We emphasize that the primary interest
in this paper is to demonstrate the benefits of applying graph transformation
techniques to the field of kernelization in general; the concrete new results in
edge clique covering thus are of secondary interest only. Hence, our contribution
is of mostly conceptual nature.
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2 Basic Concepts of Kernelization and Critical
Pair Analysis

Kernelization is a core concept of parameterized algorithmics, while critical pair
analysis is of central importance in analyzing confluence of (graph) transformation
systems.

2.1 Kernelizations

Data reduction for NP-hard problems is often seen as a heuristic task because
in classic complexity analysis, nothing can be proved about the quality of data
reduction; this is because even the smallest provable data reduction would,
by repetition, imply polynomial-time solvability of the instance and thus P =
NP [2, 15]. Parameterized complexity, however, provides a useful notion of the
power of data reduction with the concept of a problem kernel.

A parameterized problem can be defined by a set of instances (x, k), where k
is called the parameter [7, 11, 26].

Definition 1. Let L be a parameterized problem. A reduction to a problem kernel
or kernelization is a transformation via data reduction rules of an instance (x, k)
to an instance (x′, k′) (the problem kernel of instance (x, k)), such that

• (x, k) ∈ L ⇐⇒ (x′, k′) ∈ L,

• |x′| ≤ g(k) for some arbitrary computable function g depending only on k,

• k′ ≤ k, and

• the transformation runs in polynomial time.

We call g(k) the size of the problem kernel of the parameterized problem L.

In other words, a kernelization is a data reduction that creates an equivalent
instance whose size depends only on the parameter k and not on the original
input size n anymore.

2.2 Critical pair analysis in graph transformation theory

The algebraic theory of graph transformations [10] provides a specific technique
known from term rewriting systems [18], called critical pair analysis, which has
been generalized to graph transformation systems by Plump [29]. Critical pair
analysis supports the verification of local confluence using the software system
AGG [1]. The main idea is to show local confluence not for all pairs of (a possibly
infinite number of) transformation steps G =⇒ G1 and G =⇒ G2 via rules r1

resp. r2, but only for all critical pairs. A pair of transformation steps is called a
critical pair if it is conflicting in a minimal context in the following sense: The
pair G =⇒ G1, G =⇒ G2 via r1, r2 is called parallel independent if there are
transformation steps G1 =⇒ G3, G2 =⇒ G3 via r2, r1. A pair is called conflicting
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if it is not parallel independent. It has minimal context if each vertex and edge
in G belongs to the match of r1 or r2 in G of the transformation steps G =⇒ G1

and G =⇒ G2 via r1, r2. For a graph transformation system with a finite
number of rules based on finite graphs, there is only a finite number of critical
pairs. All of them can be computed automatically by the graph transformation
analysis tool AGG [1]. The Local Confluence Theorem for algebraic graph
transformations [10] implies local confluence of a graph transformation system
provided that all critical pairs are strictly confluent, where “strictness” is an
additional technical condition for the transformations. The verification of strict
confluence for critical pairs can also be supported by AGG and is applied to
data reduction rules in Sections 3 and 4.

As pointed out in Section 1.2, local confluence and termination implies
confluence [18, 25]. Hence, for terminating data reduction rules it is sufficient to
show strict confluence for all critical pairs, in order to obtain confluence of data
reduction.

The application of critical pair analysis to data reduction rules, however, is not
yet fully automated. The first reason is that the Local Confluence Theorem [10]
based on critical pairs is valid for directed graphs (with parallel edges and loops)
and several other kinds of graphs (such as typed, attributed, or hypergraphs), but
not yet formally proved for undirected graphs as considered for data reduction
in this paper. The second reason is that data reduction rules in general are rule
schemes in the sense of graph transformation theory, where rule schemes can be
applied to an unbounded number of vertices, and rules are applied to a constant-
size subgraph, depending on the size of the left-hand side of the rule. Each rule
schema corresponds to a—possibly infinite—set of rules in the sense of Ehrig
et al. [10]. For these reasons, we prove local confluence also directly in Sections 3
and 4; in the case of Partial Clique Cover, the proof is quite complex, based
on a large number of case distinctions. These proofs depend strictly on the
specific rules. Altogether, we study two approaches for local confluence, the
direct proof and the proof based on critical pairs. It is an interesting challenge
for future work to extend the theory of graph transformations [10]—and the
corresponding tool AGG—to handle also data reduction rules in a more general
way.

3 Case Study Clique Cover

We use the well-known NP-hard Clique Cover problem for our first case study.

Clique Cover
Instance: An undirected graph G = (V,E) and an integer k ≥ 0.
Question: Is there a set of at most k cliques in G such that each edge
in E has both its endpoints in at least one of the selected cliques?
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For an instance (G, k), we call a set of at most k cliques that covers all edges
a solution. Choosing Clique Cover1 has several reasons: It is a conceptually
simple graph problem, and the best known (theoretical) data reduction rules so
far are easy to understand and also applied in practice [13, 14, 27, 31]. Moreover,
Clique Cover has a kernelization with a size bound of 2k vertices [14, 16], and
it was recently shown that under standard complexity-theoretic assumptions,
this cannot be improved to a polynomial bound [5].

Clique Cover occurs in many contexts and applications (see e. g. [6, 13, 14,
19, 21] and references therein). It is also known as Keyword Conflict problem
[19] or Covering by Cliques [12] or Intersection Graph Basis [12]. Clique
Cover is NP-hard [21, 28], even when restricted to planar graphs [4] or graphs
with maximum degree 6 [17]. Further, Clique Cover is not approximable
within a factor of nε for some ε > 0 unless P = NP [23]. Gramm et al. [14]
report on experiments with an exact algorithm based on data reduction and
a search tree. They also prove that their data reduction rules yield a kernel.
These data reduction rules are the basis of our investigations on confluence. The
rules have also recently found applications in optimizing compilers [31] and in
computational biology [27].

3.1 Kernelization for Clique Cover.

For the currently only known kernelization for Clique Cover with parameter k,
the following data reduction rules are used [14, 16].2

Rule 1. Remove isolated vertices, that is, vertices with no neighbors.

Rule 2. If there is an isolated edge, then delete it and decrease k by one.

Two vertices u, v ∈ V are called twins if {u, v} ∈ E and u and v have exactly
the same neighbors (except for v and u, respectively).

Rule 3. If {u, v} are twins and {u, v} is not an isolated edge, then delete u
(that is, remove it from the vertex set and all incident edges from the edge set).

Theorem 1 ([14, 16]). Rules 1 to 3 are correct and yield a problem kernel for
Clique Cover with at most 2k vertices.

Note that a rule R is correct if for each transformation of instances from I to
I ′ via R, we have that I is a yes-instance iff I ′ is a yes-instance. For technical
correctness of the kernel (as defined in Section 2), we additionally need to check
whether after exhaustive application of Rules 1 to 3 there are more than 2k

vertices left, and if so, the instance is replaced with a small “no”-instance (for
instance, k + 1 disjoint edges). We omit such trivial checks in the following.

1Note that in the literature sometimes also covering vertices instead of edges by cliques is
called Clique Cover.

2We note that Gramm et al. [14] used different rules involving “covered edges”, which are
equivalent to the rules presented here if the initial instance does not have covered edges (except
that Rule 3’ from Gramm et al. [14] does not treat isolated edges correctly; as already noted
by Gyárfás [16], they require a special case).
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3.2 Confluence of Data Reduction for Clique Cover

We now show that the kernelization rules from Theorem 1 are confluent.

Theorem 2. The set of Rules 1 to 3 for Clique Cover is confluent.

Proof. Clearly, the order of application for Rule 1 and Rule 2 with respect to
any of the three rules is not relevant, since their application does not affect
the applicability of other rules. It remains to show that the relative order of
applications of Rule 3 does not matter.

If we consider two vertices as equivalent when they are twins, then we obtain
an equivalence relation on the vertex set. Thus, we can partition the vertex set
into the equivalence classes of this relation, called twin classes. Note that every
twin class forms a clique in the graph. Let the twin graph3 of a graph be a graph
with the twin classes as vertices and an edge between two twin classes if there is
an edge between one vertex from one class and one vertex from the other class.

The twin graph does not change (up to isomorphism) when Rule 3 is applied,
since u and v must be from the same twin class and the rule thus always leaves
at least one vertex in any twin class. Further, Rule 3 is applicable until a twin
class contains exactly one vertex (if it is connected to vertices outside the twin
class) or two vertices (if it is an isolated clique). Since the twin graph and the
number of vertices per twin class uniquely represent a graph up to isomorphism,
we obtain confluence.

This proof also yields a shortcut to calculate the result of the kernelization,
whose naive calculation would require O(|E| · |V |2) time (Gramm et al. [14] only
state the running time of O(|V |4) for Rules 1 to 3 plus another rule).

Corollary 1. A 2k-vertex kernel for Clique Cover can be found in linear
time.

Proof. From the proof of Theorem 2, we can see that it is sufficient to calculate
the twin graph, contract each twin class to a single vertex, and then delete
isolated vertices and edges. Finding the twin graph can be done in linear
time [24, Corollary 7.4], so the kernelization can be done in linear time, too.

3.3 Confluence via Critical Pair Analysis

As pointed out in Section 2.2, the standard way to show confluence of a rule set
in graph transformation theory [10] is to construct all critical pairs and to show
for each critical pair that it is strictly confluent. The approach has been shown
for directed graphs [10], and we are confident that it can also be extended to
undirected graphs as considered in this paper, in particular to data reduction
for Clique Cover and Partial Clique Cover. Note that data reduction
rules, like Rule 2, may also change the parameter k, but this is not essential for
confluence and will be disregarded in this section.

3Twin classes and the twin graph have been used before for data reduction under the names
critical cliques and critical clique graph (see e. g. [15]).
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Figure 2: CP table for Clique Cover Rule 1 to Rule 3.3, and one critical pair
in detail

Actually, Rule 3 is a rule scheme in the sense of graph transformation theory,
which can be represented by the following family of rules R3.m for m ≥ 1:

LHS u
......x1 xm
v

R3.m(u,v)+3
RHS

x1 . . . xm
v

The rule describes the deletion of u. Applying the rule to a graph G means
to find an occurrence of the left-hand side LHS in G satisfying N [u] = N [v] =
{u, v, x1, . . . , xm}, and to replace this occurrence by the right-hand side RHS .

For graphs with n vertices, we only have to consider rules Rule 1, Rule 2,
Rule 3.1, . . . , Rule 3.r with r = n− 2, because rules with r > n− 2 cannot be
applied. Fig. 2 shows the table computed by the AGG tool [1] giving the number
of critical pairs (CP) for each pair of rules and r = 3. In the AGG tool, when
clicking on an entry in the CP table (e. g. the highlighted field showing twelve
minimal conflicts for Rule 3.2 and Rule 3.3 where rule Rule 3.2 is applied first),
the twelve conflicting situations of these two rules are shown in detailed graphical
views. Vertices and edges in the rules (in the bottom of Fig. 2) are numbered
to define their conflicting overlapping situation. We can see one of the twelve
conflicts in the overlapping graph P in the upper right part of Fig. 2, where
vertex 1 and edges 5, 6 and 8 shall be deleted by Rule 3.2, but vertex 1 and
edges 6 and 8 are also needed for the application of Rule 3.3, which is supposed
to delete vertex 4 and its incident edges.

P
r1
u}

r2
!)

P1

∗  (
P2

∗v~
P̄1
∼= P̄2

For each critical pair P1
r1⇐= P

r2=⇒ P2 of the rule set in
Fig. 2, we have shown strict confluence using AGG, essentially
by applying the rules from the rule set as long as possible
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to P1 and to P2, leading to reduced graphs P̄1 and P̄2, and
showing that they are isomorphic, as indicated in the diagram.

The critical pairs can be computed automatically, and the reduction sequences
P1

∗
=⇒ P̄1, P2

∗
=⇒ P̄2, and the isomorphism for P̄1 and P̄2 can be checked

interactively using the tool AGG.

4 Case Study Partial Clique Cover

We provide a second, more demanding case study: Partial Clique Cover, a
generalization of Clique Cover where some edges C are annotated as already
covered, and only uncovered edges need to be covered by cliques.

Partial Clique Cover
Instance: An undirected graph G = (V,E), a set C ⊆ E of covered
edges, and an integer k ≥ 0.
Question: Is there a set of at most k cliques in G such that each edge
in E \ C has both its endpoints in at least one of the selected cliques?

Partial Clique Cover was considered by Orlin [28]. A possible appli-
cation is in pairwise testing for software features [6], that is, finding a set of
configurations (tests) such that any two combinable features occur together in a
test. This can be modeled as a clique cover problem where vertices are features,
and an edge indicates that the two features are compatible. A covered edge
here would indicate a combination of features that is legal, but does not need
to be tested, for instance because it has been tested before or because it is not
officially supported.

4.1 Kernelization for Partial Clique Cover

We now examine a more complex set of data reduction rules that can deal with
Partial Clique Cover instances, where some edges are marked as covered.
Note that while Gramm et al. [14] also deal with annotated graphs, some of
their reduction rules (e. g. Rule 3’) are only correct if the original input does not
have any annotations, whereas here we allow any set of initially covered edges.

We generalize Rules 1 and 2 in a canonical way.

Rule 4 ([14, Rule 1]). Remove isolated vertices and vertices that are only
incident to covered edges.

Rule 5. If there is an isolated edge, then delete it and, if the edge was not
covered, then decrease the parameter by one.

We then adapt Rule 3 as follows:

Rule 6. Let u, v be twins. Mark all edges incident to u as covered if the following
covering conditions hold:

∀x ∈ V \ {u, v} : {u, x} ∈ C ⇐⇒ {v, x} ∈ C, (CC1)

{u, v} /∈ C ⇒ ∃x ∈ V \ {u, v} : {v, x} /∈ C. (CC2)
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The correctness of Rules 4 and 5 is easy to see; we now prove correctness
of Rule 6. For Partial Clique Cover, a yes-instance I = (G,C, k) means
that there is a set of at most k cliques in the graph G = (V,E) with covered
edges C such that each edge in E \ C has both its endpoints in at least one of
the selected cliques.

Proposition 1. Rule 6 is correct.

Proof. Let I = (G,C, k) be the original instance and I ′ = (G,C ′, k) the instance
after one application of Rule 6. If there is a clique cover K = (K1, . . . ,Kk)
for I, then clearly K is also a solution for I ′. Conversely, if there is a clique
cover K′ = (K ′1, . . . ,K

′
k) for I ′, we can construct a clique cover K = (K1, . . . ,Kk)

for I by setting Ki = K ′i ∪ {u} if v ∈ K ′i and Ki = K ′i otherwise, for 1 ≤ i ≤ k.
Since u and v are twins, each Ki is in fact a clique. It remains to show that
each edge in E \ C is covered by K. All uncovered edges except those incident
to u are already covered by K′. For each uncovered edge {u, x} ∈ E, {u, x} /∈ C
and x 6= v, by (CC1), we have {v, x} /∈ C. Hence also {v, x} /∈ C ′, thus
there is a clique K ′i ∈ K′ with {v, x} ⊆ K ′i. This implies v ∈ K ′i and using
Ki = K ′i ∪ {u} also {u, x} ⊆ Ki. Finally, if {u, v} /∈ C, then by (CC2) there
is some x ∈ V, x 6= u, v with {v, x} /∈ C and hence also {v, x} /∈ C ′, thus
{v, x} ⊆ K ′i for some K ′i ∈ K′, and we have {u, v} ⊆ Ki for similar reasons.

However, if we drop either (CC1) or (CC2), then the rule is not correct, as
we show by counter-examples.

Proposition 2. Rule 6 without (CC1) or (CC2) is not correct.

Proof. We give counter-examples: Consider a graph with three vertices u, v, w
which form a clique. If {u, v} and {v, w} are covered and {u,w} is uncovered,
then Rule 6 without (CC1) would allow to mark {u,w} as covered. However,
the resulting instance is a yes-instance for k = 0, while the original instance
is not. Similarly, consider the case that {u,w} and {v, w} are marked covered,
but {u, v} is not. Then, Rule 6 without (CC2) would allow to mark {u, v} as
covered. Again, the resulting instance is a yes-instance for k = 0, while the
original instance is not.

It is not hard to see that Rules 4 to 6 yield a problem kernel for Clique
Cover, that is, for instances without covered edges.

Proposition 3. Rules 4 to 6 yield a problem kernel for Clique Cover with
at most 2k vertices.

Proof. If the original instance has no covered edges, new ones are only introduced
by Rule 6. In this rule, all edges incident to one vertex are marked as covered.
We can assume that this vertex then gets immediately deleted by Rule 4, since no
other change can destroy this reduction opportunity. Thus, Rule 4 is equivalent
to Rule 1, and Rule 5 is equivalent to Rule 2. Furthermore, (CC1) is always
satisfied, and (CC2) is satisfied unless u and v form an isolated edge. Thus,
Rule 6 is equivalent to Rule 3. The kernel bound now follows from Theorem 1.
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Unfortunately, the new rules do not yield a problem kernel for Partial
Clique Cover with respect to the parameter k. In fact, we can show that
Partial Clique Cover is already NP-complete for k = 3, and thus cannot
have a problem kernel unless P = NP.

Theorem 3. Partial Clique Cover is NP-complete for k ≥ 3.

Proof. We first describe a polynomial-time many-to-one reduction from 3-
Coloring to the problem of covering vertices by disjoint cliques, and then
reduce this problem to Partial Clique Cover. 3-Coloring is a well-
known NP-hard problem [12], which asks for a coloring of the vertices of a
graph with three colors such that no two adjacent vertices have the same color.
From an instance G = (V,E) of 3-Coloring, first construct the complement
graph Ḡ = (V, Ē) with Ē = {{u, v} | u, v ∈ V, {u, v} /∈ E}. The task is now
to find three vertex-disjoint cliques in Ḡ that cover all vertices. We then ex-
pand each vertex to an edge, that is, we construct a graph G′ = (V ′, E′) with
V ′ = {v1 | v ∈ V } ∪ {v2 | v ∈ V } and

E′ = {{v1, v2} | v ∈ V } ∪ {{vi, wj} | {v, w} ∈ Ē, i, j ∈ {1, 2}}.

Our Partial Clique Cover instance then consists of G′ with C = E′ \
{{v1, v2} | v ∈ V } and k = 3, that is, only the edges corresponding to a vertex
in G need to be covered.

We now need to show that G has a 3-coloring iff there are three cliques in G′

that cover all edges in C. If there is a 3-coloring of G, then we can cover the
vertices of Ḡ with three cliques K1,K2,K3. From a clique Ki, 1 ≤ i ≤ 3, we can
construct a clique K ′i = {v1 | v ∈ Ki} ∪ {v2 | v ∈ Ki} in G′. It is easy to see
that K ′1,K

′
2,K

′
3 is indeed a clique cover of size 3 for G′ that covers every edge

in E′ \ C. Conversely, assume that we have three cliques K ′1,K
′
2,K

′
3 in G′ that

cover all edges in E′ \C. First, if only one vertex of v1 and v2 for some v ∈ V is
contained in some K ′i, 1 ≤ i ≤ 3, then we omit this vertex from K ′i. Then, if the
two vertices of an edge of E′ \ C are contained in more than one clique, omit
them from all but one of these cliques. Clearly, after these operations we still
have a clique cover for E′ \ C, and each edge in E′ \ C occurs in exactly one
of the three cliques. We can then construct three cliques Ki := {v | v1 ∈ K ′i},
1 ≤ i ≤ 3, which are disjoint and cover all vertices in Ḡ. This yields a 3-coloring
of G. The construction easily generalizes to k > 3.

Adding the further parameter number c = |C| of covered edges, we can show
a kernel for Partial Clique Cover with respect to the combined parameter
(k, c).

Theorem 4. Rules 4 to 6 yield a problem kernel for Partial Clique Cover
with at most 2k+c vertices.

Proof. The idea of the proof is to show that if a Partial Clique Cover
instance has more than 2k+c vertices, then we can construct a Clique Cover
instance, find a data reduction opportunity there using Rules 1 to 3, and using
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this also find a data reduction for the Partial Clique Cover instance; in this
way, we can use the bounds from Theorem 1.

Given an instance I = (G = (V,E), C, k) of Partial Clique Cover, we
construct a graph Ḡ = (V̄ , Ē) for Clique Cover with V̄ = V ∪ {xe | e ∈ C}
and Ē = E ∪

⋃
e={u,v}∈C{{u, xe}, {xe, v}}. That is, for each covered edge we

add a new vertex and connect it to the endpoints of the edge to form a triangle.
We claim that if I is a yes-instance for Partial Clique Cover, then

Ī = (Ḡ, k + c) is a yes-instance for Clique Cover. To see this, consider a
solution C1, . . . , Ck for I. It covers all edges of Ḡ except for the newly added
edges. These can clearly be covered by adding c triangles, each containing an
edge in C and the two corresponding new edges. Hence, we get a clique cover of
size k + c.

Thus, if I is a yes-instance with more than 2k+c vertices, then Ī is also a
yes-instance with more than 2k+c vertices, and thus by Theorem 1, at least one
of Rules 1 to 3 applies to Ī. If Rule 1 or Rule 2 applies, then it is easy to see
that Rule 4 or Rule 5 applies to I, respectively. We claim further that if Rule 3
applies to Ī, then also one of Rules 4 to 6 applies to I. Showing this claim
completes the proof of the theorem.

To see the claim, note that if Rule 3 applies to Ī, then there is an edge {u, v}
which is not isolated such that NḠ[u] = NḠ[v]. If one of u and v, say u,
is a new vertex x{v,w} added for a covered edge {v, w} ∈ C, then we have
NḠ[u] = {u, v, w} = NḠ[v] and thus NG[v] = {v, w}, that is, in G vertex v is
only incident to the covered edge {v, w}, and Rule 4 applies.

It remains to consider the case that u, v ∈ V . Clearly NḠ[u] = NḠ[v] implies
NG[u] = NG[v], since G is an induced subgraph of Ḡ. If there is no w ∈ V,w 6= v
with {u,w} ∈ E\C, then {u, v} is an isolated edge and Rule 5 applies. Otherwise
we have w ∈ V , w 6= v with {u,w} ∈ E \ C, but for no such w can {u,w} be
covered, since x{u,w} would be in NḠ[u] but not in NḠ[v]. Thus, the covering
conditions (CC1) and (CC2) are fulfilled and Rule 6 applies.

4.2 Confluence of Data Reduction for Partial Clique Cover

We give a direct proof for the confluence of the Partial Clique Cover data
reduction rules, using local confluence and a somewhat involved case distinction.
The challenge is that we cannot use the twin graph anymore as in Theorem 2,
since it might be required for an optimal solution to cover twins with different
cliques.

In the following we use the graphical notation for Rules 4 to 6 as usual in
graph transformation theory [10]. An edge marked by “1” means that this edge
is covered.

Rule 4 : LHS u
1 1

x1
... xm

R4(u)

m≥0
+3

RHS

x1
... xm

13



A match of Rule 4 in G is valid if x1, . . . , xm are exactly all neighbors of u in G.

Rule 5 : LHS u
c

v

R5(u,v)

c∈{0,1}
+3

RHS
∅

A match of Rule 5 in G is valid if {u, v} is an isolated edge in G, where c = 0
means that {u, v} is uncovered, and c = 1 means that it is covered.

Rule 6 : LHS u
c1

c0

cm

x1

c1

xm

cm
v

R6(u,v)

m≥1, ci∈{0,1}
+3

RHS u
1

1

1

x1

c1

xm

cm
v

A match of Rule 6 is valid if {u, v} are twins, but {u, v} is not an isolated edge
(m ≥ 1), and the match of LHS of Rule 6 in G contains exactly all vertices in
N [u] = N [v]. Moreover, c0 = 0 implies ci = 0 for some i ≤ m (see covering
conditions (CC1) and (CC2) of Rule 6).

We note that a confluent kernelization for Partial Clique Cover can also
be obtained by taking Rules 1 to 3, restricting their applicability to instances
without covered edges, and adding a rule that replaces covered edges by a triangle
consisting of uncovered edges, as in the proof of Theorem 4. However, this does
not serve our main goal of illustrating the use of tools from graph transformation
theory in concrete rule analysis.

Theorem 5. Rules 4 to 6 for Partial Clique Cover are confluent.

Proof. According to a general result for rewriting systems [18, 25], confluence
follows from local confluence and termination. Rule 4 and Rule 5 are terminating,
because the number of vertices is strictly reduced for each rule application. For
Rule 6, the number of uncovered edges is strictly reduced, unless all edges
incident to u are covered already. In this case, the application of Rule 6 leads to
an identical transformation which can be neglected for termination. It remains
to show that Rules 4 to 6 (R4 to R6 for short) are locally confluent.

This requires to show local confluence of G1
r1⇐= G

r2=⇒ G2, where r1, r2 ∈
{R4, R5, R6}. Local confluence of (R4, R4), (R5, R5), (R4, R5), and (R5, R6) is
easy to see, and for symmetry reasons also for (R5, R4) and (R6, R5).

1. (R4, R4): Local confluence of Rule 4 with itself.

Local confluence of G1
R4(u)⇐= G

R4(u′)
=⇒ G2 with u 6= u′ is obvious for

u′ /∈ N [u] and hence, u /∈ N [u′] because both rule applications are parallel
independent. For u′ ∈ N [u] we have w.l.o.g. u′ = x1, leading to the local
confluence diagram in Fig. 3, where we only show the essential vertices
and edges of G, G1, G2, and G3.

Note that N [u] in the match of R4(u) to G is different from N [u] for R4[u]
applied to G2 and similarly for N [u′].
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u = x1'

u' = x1
x2

xm

x2' xm'

...
1

1 1

R4(u)

R4(u')

R4(u)

G2 G3

G1G

...

1

1

u' = x1
x2

x2' xm'

...

1 1

...

xm

u = x1'

x2

x2' xm'

...

...

1

1

xm
x2

x2' xm'

...

...

xm

R4(u')

Figure 3: Local confluence of Rule 4 with itself

2. (R5, R5): Local confluence of Rule 5 with itself.

Local confluence of G1
R5(u,v)⇐= G

R5(u′,v′)
=⇒ G2 for {u, v} 6= {u′, v′} is obvious

because the isolated edges {u, v} and {u′, v′} cannot overlap.

3. (R4, R5): Local confluence of Rule 4 with Rule 5.

Local confluence of G1
R4(u)⇐= G

R5(u′,v′)
=⇒ G2 is obvious for u 6= u′, v′ because

the matches are disjoint. For u = u′ (and similarly for u = v′), we have
x1 = v′ leading to the local confluence in Fig. 4.

4. (R6, R5): Local confluence of Rule 6 with Rule 5.
Local confluence of R6(u, v) with R5(u′, v′) is obvious because the matches

u = u'

x1 = v' 

1
R4(u)

R5(u',v')

G2

G1G

R4(v')

x1 = v' 

O

Figure 4: Local confluence of Rule 4 and Rule 5
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are disjoint, i. e., u′, v′ /∈ N [u] = N [v].

It remains to show local confluence for the cases (R6, R4) and (R6, R6),
more precisely, (R6(u, v), R4(w)) and (R6(u, v), R6(u′, v′)), where (w), (u, v),
and (u′, v′) are arbitrary matches for R6 resp. R4, but these cases are quite
involved.

5. (R6, R4): Local confluence of Rule 6 with Rule 4 For local confluence

G2
R6(u,v)⇐= G

R4(w)
=⇒ G1 we have to consider the following four different

subcases: (5.1) w /∈ N [u] and (5.2) w ∈ N [u] with (5.2.1) w = x1,
(5.2.2) w = u, and (5.2.3) w = v.

5.1 w /∈ N [u] = N [v].

In this case we have parallel independence:

G

R6(u,v)
��

R4(w) +3 G1

R6(u,v)
��

G2
R4(w)

+3 G3

R4(w) is applicable to G2 because covered edges {w, x} in G are
preserved as covered edges in G2. The match of R6(u, v) in G is
given by {u, v}, {u, xi}, {v, xi}, i = 1, . . . ,m and preserved in G1

because w /∈ N [u] = N [v]. This means R6(u, v) is applicable to G1.
We obtain in both direction the same graph G3, which is structurally
equal to G1, but with {u, xi} ∈ C for i = 1, . . . ,m.

5.2 w ∈ N [u] = N [v].

5.2.1 w = x1.
For m = |N [u]| = |N [v]| = 1, we have local confluence by dia-
gram (1) in Fig. 5 where {u, v} is covered in G by condition (CC2)
of Rule 6.
For m = |N [u]| = |N [v]| ≥ 2, we consider the diagram (2) in
Fig. 5. Rule R4(w) can be applied to G2 because the match of
R4(w) in G given by {w, u}, {w, v}, {w, y1}, . . . , {w, yj} is still
available in G2. Moreover, R6(u, v) can be applied to G1 because
we can show properties (CC1) and (CC2) of Rule 6, where (CC1)
splits into the two parts for “⇒” and for “⇐”.

(CC1),⇒ For all x 6= u, v and {u, x} /∈ C in G1, we have x 6= x1 = w
and {u, x} /∈ C in G. Applying R6(u, v) to G, we have
{v, x} /∈ C in G and thus also {v, x} /∈ C in G1 obtained by
applying R4(w) to G.

(CC1),⇐ For all x 6= u, v and {u, x} ∈ C in G1, we have x 6= x1

because x1 /∈ G1. This implies {u, x} ∈ C in G, and we have
{v, x} ∈ C in G, and therefore {v, x} ∈ C in G1.

(CC2) Let {u, v} /∈ C in G1. Then {u, v} /∈ C in G. By (CC2) valid
for the match of R6(u, v) in G (which is essentially the same
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u

w = x1
x2

xm

y1 yj

...
1

1
1

R4(w)

R6(u,v) R6(u,v)

R4(w)

G2 G3

G1G

...
v1

G3'

m ≥ 2

m ≥ 2

R4(w)

m = 1

m = 1

R4(w)

=~

u

x2
xm

y1 yj

...

...
v

u

y1 yj
...

v

1

G1'

u

w = x1
x2

xm

y1 yj

...
1

1
1

...
v1

1
1

1

u

x2
xm

y1 yj

...

...
v

1
1

1

u

y1 yj
...

v

1

(2)(1)

Figure 5: Local confluence of Rule 6 and Rule 4 for Case 5.2.1: w = x1

match now, reduced only by node x1 and its incident edges),
we have {v, x} /∈ C for some x 6= x1 because {v, x1} ∈ C.
This implies {v, x} /∈ C in G1.

5.2.2 w = u.
In this case we have the situation depicted in Fig. 6, which shows
local confluence. Note that all neighbors of w in G are also
neighbors of v because u = w and N [u] = N [v].

5.2.3 w = v.
In Fig. 7, we have a similar picture as above showing local con-
fluence for w = v. Note that we have c1 = · · · = cm = 1,
leading to the equality G1 = G3, which follows from condition
(CC1) for R6(u, v) applied to G. In fact, we need ((CC1),⇒) and
((CC1),⇐) since the condition ((CC1),⇒) is not sufficient.

6. (R6, R6): Local confluence of Rule 6 with itself.

For local confluence of G2
R6(u′,v′)⇐= G

R6(u,v)
=⇒ G1, we have to consider again

four different subcases: (6.1) {u, v}∩{u′, v′} = ∅ with (6.1.1) u′, v′ /∈ N [u],
and (6.1.2) u′, v′ ∈ N [u], and (6.2) {u, v} ∩ {u′, v′} 6= ∅ with (6.2.1) u′ = v
and v′ 6= u, and (6.2.2) u = v′, and v = u′.

6.1 {u, v} ∩ {u′, v′} = ∅.
6.1.1 u′, v′ /∈ N [u] = N [v].

In this case, we also have u, v /∈ N [u′] = N [v′] and G,G1, G2,
and G3 are structurally equal, but they differ in the covering of
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R4(w)

R6(u,v)

G2 = G

G1G

R4(w)

u = w

x1
xm...

v

1
1

1

x1
xm...

v

1
1

1
u = w

x1
xm

v

...

Figure 6: Local confluence of Rule 6 and Rule 4 for Case 5.2.2: w = u

R4(w)

R6(u,v)

R4(w)

G2 G3

G1G u

x1
xm...

v = w

c1
1

cm

1 1

u

x1
xm...

c1

cm

=

u

x1
xm...

v = w

1

1 1

1

1
u

x1
xm...

1

1

Figure 7: Local confluence of Rule 6 and Rule 4 for Case 5.2.3: w = v
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edges:

G

R6(u′,v′)
��

R6(u,v) +3 G1

R6(u′,v′)
��

G2
R6(u,v)

+3 G3

Let R6(u, v) be applicable to G with {u, v}, {u, xi}, {v, xi}, i =
1, . . . ,m, m ≥ 1. Moreover, let R6(u′, v′) be applicable to G with
{u′, v′}, {u′, x′i}, {v′, x′i}, i = 1, . . . ,m′, m′ ≥ 1. According to
our assumption u′, v′ /∈ N [u] = N [v], we have for m,m′ ≥ 1:

{{u, v}, {u, xi}, {v, xi} | i = 1, . . . ,m}
∩ {{u′, v′}, {u′, x′i}, {v′, x′i}|i = 1, . . . ,m′} = ∅ (*)

Due to symmetry, it is sufficient to show thatR6(u, v) is applicable
to G2. Using (*), we can show that conditions (CC1) and (CC2)
hold, and hence R6(u, v) is applicable to G2:

(CC1),⇒ For all x 6= u, v in G2 with {u, x} /∈ C ⇒ {u, x} /∈ C in G.
Hence, by (1a) for G: {v, x} /∈ C =⇒ {v, x} /∈ C in G2,
using (*).

(CC1),⇐ For all x 6= u, v in G2 with {u, x} ∈ C ⇒ {u, x} ∈ C in G,
using (*). We have {u, x} ∈ C in G⇒ {v, x} ∈ C in G2.

(CC2) Given {u, v} /∈ C in G2 ⇒ {u, v} /∈ C in G.
By (CC2) valid for the match of R6(u, v) in G, we have
x 6= u, v with {v, x} /∈ C in G =⇒ {v, x} /∈ C in G2, using (*).

This implies that R6(u, v) can be applied to G2 and, due to
symmetry, R6(u′, v′) can be applied to G1, leading to the same G3

in both cases. Graph G3 is structurally equal to G, G1, and G2,
with all edges in both sets of (*) covered in G3.

6.1.2 u′, v′ ∈ N [u] = N [v].
In this case, we also have u, v ∈ N [u′] = N [v′] and G,G1, G2,
and G3 are structurally equal leading to the local confluence
diagram in Fig. 8 using the notation of Case 3.1, where w.l.o.g.
u′ = x1, v

′ = x2, u = x′1, and v = x′2. Again, we only show the
essential parts of G,G1, G2, G3.
Due to symmetry, it is sufficient to show that R6(u, v) applied
to G2 satisfies (CC1) and (CC2).

(CC1),⇒ Let x 6= u, v in G2 with {u, x} /∈ C ⇒ x 6= x1 and x = x2 = v′

or x = xm. Moreover, {u, x} /∈ C in G ⇒ {v, x} /∈ C in G
by (CC1) for G ⇒ {v, x} /∈ C in G2 because x 6= x1.

(CC1),⇐ Let x 6= u, v in G2 with {u, x} ∈ C. If {u, x} ∈ C also in G
we have also {v, x} ∈ C in G and hence also {v, x} ∈ C in G2.
Otherwise {u, x} /∈ C in G and {u, x} ∈ C in G2 implies
{u, x} = {u, u′} and x = u′, because only edges incident to u′

become covered in G2. Hence {v, x} = {v, u′} ∈ C in G2

after application of R6(u′, v′) to G.

19



u=x1'

u'=x1 x2=v'
xm

xm'

...

v=x2'

G3

G

...

u=x1'

u'=x1 x2=v'
xm

xm'

...
1

1

v=x2'

1

...

R6(u,v)

G1
1

u=x1'

u'=x1 x2=v'
xm

xm'

...
1

1

v=x2'1

...

1

R6(u’,v’)

G2 u=x1'

u'=x1 x2=v'
xm

xm'

...
1

1

v=x2'1

...

1

R6(u,v)

R6(u’,v’)

1 1
1

Figure 8: Local confluence of Rule 6 and Rule 6 for Case 6.1.2: {u, v}∩{u′, v′} = ∅
and u′, v′ ∈ N [u] = N [v]

(CC2) Let {u, v} /∈ C in G2. This implies that {u, v} /∈ C in G.
By (CC2) valid for the match of R6(u, v) in G, we have
x 6= u, v with {v, x} /∈ C in G. If {v, x} /∈ C in G2, we are
done. Otherwise {v, x} ∈ C in G2 is only possible if x = u′.
This implies that {v, u′} = {u′, v} /∈ C in G by {v, x} /∈ C in
G. (1a) for G implies {v′, v} /∈ C in G with v, v′ 6= u′. This
implies that {v, x} = {v, v′} /∈ C in G2, because only edges
incident to u′ become covered in G2.

6.2 {u, v} ∩ {u′, v′} 6= ∅.
6.2.1 u′ = v and v′ 6= u.

In this case, we have N [u] = N [v] = N [u′] = N [v′] leading
to the local confluence diagram in Fig. 9 with ci, di ∈ {0, 1}
where w.l.o.g. v′ = x1 = x′1, . . . , xm = x′m. We have that G1

is isomorphic to G2 (G1
∼= G2) if c1 = d1, . . . , cm = dm. This

follows from condition (CC1) for R6(u, v) applied to G.

6.2.2 u = v′ and v = u′.
Note that (u, v) 6= (u′, v′) excludes the case u = u′ and v = v′.
Similarly to Case 6.2.1, we get the local confluence diagram
in Fig. 10. Mapping u to v and v to u we have that G1 is
isomorphic to G2 if c1 = d1, . . . , cm = dm. This follows as
above from condition (CC1) for R6(u, v) applied to G.
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u

v'=x1 xm

c1

R6(u,v)

R6(u’,v’)

G2

G1G

v=u'

1c0
cm

d1

d0

dm

u

v'=x1 xm

c1

v=u'

cm

d0

1 1

u

v'=x1 xm

v=u'
d1

d0

dm

1 1

=~

1

Figure 9: Local confluence of Rule 6 and Rule 6 for Case 6.2.1: {u, v}∩{u′, v′} 6= ∅
with u′ = v and v′ 6= u

u=v'

x1 xm

c1

R6(u,v)

R6(u’,v’)

G2

G1G

v=u'

1c0
cm

d1
dm

u=v'

x1 xm

c1

v=u'

cm

1 1

u=v'

x1 xm

v=u'
d1

dm

1 1

=~

1

Figure 10: Local confluence of Rule 6 and Rule 6 for Case 6.2.2: {u, v}∩{u′, v′} 6=
∅ with u = v′ and v = u′
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This completes the proof for Theorem 5.

4.3 Confluence via Critical Pair Analysis

Since the confluence proof for Rules R4 to R6 in Theorem 5 is quite complex, we
discuss an alternative approach via critical pair analysis. Similarly to Rule 3 in
Fig. 2 of Section 3, we now consider Rules R4 to R6. Here, R6 has in addition
to parameter r the parameters c0, c1, . . . , cr ∈ {0, 1}, where ci = 1 means that
the corresponding edge is covered. Note that covering condition (CC1) of R6
requires the same covering of edges {u, xi} and {v, xi} for i = 1, . . . , r, and if
c0 = 0, then covering condition (CC2) requires ci = 0 for some i ∈ {1, . . . , r}.
For r = 1, this leads to rule instances R6.1.i (i = 1, 2, 3), for r = 2 to R6.2.i
(i = 1, . . . , 4) and for r = 3 to R6.3.i (i = 1, . . . , 7). The critical pair table for
r = 1, 2, 3 (up to isomorphism) is shown in Fig. 11 as a screenshot from the AGG
tool [1], giving the number of critical pairs for each pair of rules for r = 1, 2, 3.

In the table in Fig. 11, we have e. g. seven instances of R6 for r = 3 with
differently covered edges. For example, “Rule6.3.1.1” is the instance of R6 with
|N [u]| = |N [v]| = 3, where the first “1” denotes the covering situation (explained
below) for edges incident to u (except {u, v}), and the second “1” meaning
that {u, v} is covered (we would have “0” in case {u, v} is uncovered). For the
coverings of edges incident to u, we distinguish case 1 (all edges are uncovered),
case 2 (one edge is covered), . . . , and case r + 1 (all edges are covered). As
described in Section 3.3, the AGG tool supports the inspection of reasons for
conflicts by visualizing the critical overlapping regions of two conflicting rule
applications. Hence, when an AGG user selects a rule pair by clicking on a field in
the critical pair table (e. g. the highlighted field showing twelve minimal conflicts
for 6:Rule6.2.1.0 and 12:Rule6.3.1.1 where rule 6:Rule6.2.1.0 is applied first), the
twelve conflicting situations of these two rules are shown in detailed graphical
views. Vertices and edges in the rules (shown in the bottom of Fig. 11) are
numbered to define their conflicting overlapping situation. We can see one of the
twelve conflicts in the overlapping graph in the lower right part of Fig. 11, where
edges 5, 6, and 9 are uncovered and shall be marked as covered by application
of Rule6.2.1.0, but edge 9 also needs to be uncovered for the application of
Rule6.3.1.1, which is supposed to mark edges 8, 9, and 12 as covered. We have a
change-attribute conflict here, because both rules want to access and change the
same “attribute” c = 0 of edge 9.

Similarly to the case study in Section 3, we have shown confluence of the
critical pairs in Fig. 11 using AGG, where the confluence analysis has been
completed for overlapping graphs with at most five vertices. For a growing
number (and size) of rule instances, also the number of critical pairs to be
analyzed is growing. A more efficient technique based on critical pairs for rule
schemes should be subject of future research.
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Figure 11: Critical pair table for Partial Clique Cover Rules 4 to 6.3.4.1,
and one critical pair in detail

5 Discussion and Future Work

Seemingly for the first time, our work establishes a fruitful link between graph
transformation theory and the theory of kernelization from parameterized algo-
rithmics. While considering (comparatively simple) kernelizations for Clique
Cover and Partial Clique Cover, already several theoretical and technical
challenges popped up when proving confluent kernelizations. We believe that to
analyze whether a set of data reduction rules is confluent is a well-motivated
and natural theoretical question of practical relevance with the potential for
numerous opportunities for (interdisciplinary) future research between so far
unrelated research communities.

As to research questions that are more rooted in graph transformation theory,
it is first important to extend the theory of critical pair analysis to undirected
graphs. We are confident that this works not only for the examples in this paper.
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Moreover, it is an important challenge to extend critical pair analysis from rules
considering a constant-size subgraph to so-called rule schemes with unbounded
number of vertices, that is, to transfer the “amalgamation” [3] of rewriting rules
to this new context.

As to research on confluent kernelization rooted more in algorithmics, it
appears to be of general interest to investigate how confluent problem kernels
may help in deriving both upper and lower bounds for problem kernel sizes. In
addition, it remains to study how confluence may contribute to speeding up
kernelization algorithms and how the knowledge of having a uniquely determined
problem kernel can help subsequent solution strategies that build on top of the
kernel. Finally, studying confluence of data reduction and kernelization beyond
graph problems, for example for string or set problems, remains a future task.
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